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Introduction 

Young children ask a lot of “why” questions.  Why can’t we have candy for dinner?  Why do I 

have to go to school?  Why do I get boogers in my nose?  Eventually they learn that they live in 

a society where things are done a certain way, and they should be asking less disruptive “how” 

questions.  How questions are civilization-maintaining questions, and they depend on the 

civilization that you live in.  How do you make fire?  How do you turn wheat into bread?  How 

do you download and install an app?  These important questions guide the transfer of skills 

from one generation to the next, but not always in the best way.  There is an old story about a 

daughter who asks her mother why she should cut off the end of a ham before roasting it.  The 

mother replies that this is how she has always done it, and that was the way her mother used 

to do it.  When they ask grandma about it, she says that she always cut off the end of the ham 

because she had a small roasting pan and the ham wouldn’t fit otherwise!   

Why do you do it this way?  Is there a better way to do it?  Why do it at all?  What if...?  These 

are civilization-advancing questions that promote understanding and independent thinking.  

Unfortunately mathematics sometimes gets transferred from one generation to the next using 

only a “how to” approach.  Even in college the only questions students ask in a calculus class 

are along the lines of “How do you do problem 98 in section 3.2?”  One statistics professor 

actually told her students, “On the test, try to determine if it is a chapter 4 problem or a 

chapter 5 problem.  If it is a chapter 4 problem, use the formulas from chapter 4 on your 

formula sheet.  Otherwise, use the chapter 5 formulas.”  Now that we can program computers 

to do math problems for us, this kind of thing is not just boring; it’s rather pointless.  You can 

memorize steps, but how long will you remember them?  And what will you really have learned 

after you do all 98 problems in section 3.2? 

Yes, this book will show you how to do math problems.  It will also encourage you to go behind 

the scenes to learn the secrets of why we can solve problems that way.  One way to do that is 

by asking a lot of questions.  It also helps to realize that creating math problems is not the 

exclusive domain of math textbook writers.  It can actually be done by untrained people in their 

own home (provided they wear safety goggles).  You can take a difficult math problem and 

make your own, easier version of it.  Then you can experiment with this simpler problem to see 

how a method works, and why it works.   

How will I know if I have the right answer to a problem?  This is an important question.  Look 

for the green color coding in the text to help you figure it out for different types of problems. 
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When things get tough: 

 

1. DO NOT PANIC!  This stuff may seem hard, but it’s math, not magic.  There is always a 

logical reason for what is going on, and this book is here to help you find it.  

 

2. Read slowly.  Imagine us having a very leisurely conversation about the topic, and 

backtracking when things don’t seem clear.   

 

3. Replace “I don’t get it” with “I don’t believe it”.   That’s what I always do because it puts 

the burden of proof on the textbook or the teacher rather than implying that I’m not 

smart  .  Also, questioning and trying things out on your own is much better than just 

blindly believing anything that is printed. 

 

4. For each topic, read only the sections you need.  Courses vary a lot in what they contain 

and adding extra detail will rarely help you to understand the subject better.  Spend 

your time learning the basics. 

 

5. Still don’t believe it?  E-mail 

 . 

 

 

Graphing 

Please note that it is not necessary to buy a graphing calculator for Algebra 2 and Pre-Calculus.  

There are many free graphing apps for smartphones and computers.  For your PC, you can 

download MathGV graphing software at http://www.mathgv.com/ so you can experiment with 

different function graphs.  It provides nicer and larger pictures than a calculator.  To graph 

functions using MathGV, select File → New 2D Cartesian Graph.  Then select Graph → New 2D 

Function.  Alternatively, you can use one of many free online graphing calculators so there is 

nothing to download.  Try searching for “geometry graphing” to find the most flexible program. 

To graph functions using a TI-84 calculator, press “Y=” and enter your function.  To insert an x, 

press the button labeled “X,T,Ø,n”.  Press “GRAPH” to see the graph.  If necessary, adjust the 

viewing rectangle by pressing “WINDOW”. 

 

 

http://www.mathgv.com/
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Text Color Coding: 

 

Summary    (Appears at the start for easy reference, read it later) 

Caution, or really important stuff 

Examples    (you may have to create your own) 

Check your answers 

 

 

Within the text, negative numbers are indicated by a small minus sign, as in -4.  Subtractions 

are indicated by a larger minus sign, as in x – 4.  This is due to properties of the text editor 

rather than a choice I would prefer to make.  A single minus sign is sufficient in mathematics to 

indicate either negative numbers or a subtraction.  However, calculators may require you to use 

a separate minus sign for negative numbers, usually indicated by ( – ) printed on the key.  

 

 

 

 

 

 

 

192  0  0 

51  51  255 

0  153  102 

102  0  204 
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Exponents 

 

xa · xb = xa + b                                      (xa)b = xab 

xa

xb
 = xa – b                                               (xy)a = xaya 

x-a is  
1

xa
                                                 x0 = 1       

x
1

n = √x
n

                                               x
a

n = √xan
 or (√x

n
)
a
     

 

Conversion factors may be raised to a power as needed, to match up with the units in your 

problem. 

 

Scientific notation puts numbers in the form a x 10b, where 1 ≤ a < 10, and b may be a 

negative number. 

                                             

 

 

Exponents indicate that something should be multiplied by itself a given number of times.  

While 2x means 2 times x, x2 means x times x.  Exponents are the second item in “Please Excuse 

My Dear Aunt Sally”.  This means that they have a very high priority in the order of 

mathematical operations.  An exponent on something generally belongs exclusively to that one 

thing, unless there are parentheses present.  So, 3x2 is just 3x ∙ x, because the exponent applies 

only to the x.  However, once you place some parentheses they get priority, and the exponent 

applies to the entire thing inside those parentheses.  (3x)2 means 3x ∙ 3x which is 9x2. 

First we will do some multiplication involving exponents, which is the easiest part.  

x3 · x4 = ?  This really means x · x · x times x · x · x · x, which equals xxxxxxx.  Now you have 7 x's 

in a row, which is x7.  Notice that the exponents simply add up. x3 · x4 = x7.  This also means that  

x5 · x5 = x10.  

Once mathematicians figure something like this out, they can't resist creating a formula, like  

xa · xb = xa+b.  Don’t be intimidated by such formulas that simply restate what was already 
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explained.  Say something like, "Yeah, you just said that, duhh!"  Then look it over carefully, just 

to... uh... make sure the mathematician hasn't made a mistake.  

 

Division with exponents is not much harder.  We already know that 
5x

x
 = 5, because if you 

multiply by x and then divide by x, you have effectively done nothing.   
5xx

xx
 is also 5. Just cross 

off one x above the line and one below the line, until all of the useless x's are gone. 
xxx

xx
 = x.  We 

can also write this as 
x3

x2
 = x1, which is just x.  Another example: 

x5

x3
 = x2 , because we can remove 3x's above the division line and 3 x's below the division line.  

Because of how this works, we can quickly divide by subtracting the exponents.   
x7

x4
 = x7-4 = x3.  Write this out completely and make sure that you believe it is correct.  The 

general formula for this is of course [ ]:  
xa

xb
 = xa-b.  

Notice that using this method, 
x1

x1
 is x1-1 which is x0.  Since any number divided by itself is 1,  

x0 must mean 1.  However x cannot be 0 here since we can’t divide by 0.  00 is undefined. 

 
 

Another thing that happens when you start subtracting exponents is that you end up with 

negative exponents.  Consider  
x2

x5
. You can write that as 

xx

xxxxx
.  Once you have removed two 

sets of x's that are not doing anything, you end up with 3x's below the line.  Note that when all 

the x’s on top are gone there is still a 1 rather than just nothing: 
xx

xxxxx
  =  

xx ∙ 1

xxxxx
 = 

1

xxx
 

If you just subtract the exponents that would leave you with x-3.  This tells you that x-3 means  
1

x3
.  That's just the way things work out. So x-a is 

1

xa
.  

Because an expression like x-4 is really a fraction, you should treat it like one.  
x−4

5
 means x-4 

divided by 5:  
1

x4
 ÷ 5 = 

1

x4
 ÷ 

5

1
 = 

1

x4
 ∙ 

1

5
 = 

1

5x4
. 

6

x−2
 means 6 ÷ 

1

x2
 = 

6

1
 ∙ 

x2

1
 = 

6x2

1
. 
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As a shortcut, you might notice that you can move the part with the negative exponent to the 

other side of the division line to get a positive exponent.  For example, 
x−3

2
 is really 

1

x3

2
, and if 

you actually do the division you will end up with 
1

2x3
.  The net result is that x-3 moves to the 

bottom and gets a positive exponent.  It works the same way if x-3 is on the bottom to start 

with:   
2

x−3
 is really 

2
1

x3

, which works out to 
2x3

1
 or just 2x3. 

This not a substitute for understanding what is going on, but it does save a lot of time to just 

move the expression with the negative exponent to either the top or the bottom and remove 

the minus sign. 

 

Multiplying with exponents causes us to have to add the exponents.  You can also [trust 

mathematicians to think of this] put an exponent on something that already has an exponent.  

This is called raising a power to a power, and it looks like (x2)3. Thinking carefully about what 

this means, we rewrite it as x2∙ x2∙ x2 = xx ∙ xx ∙ xx or x6.  Basically, we end up with x2·3 = x6. So, 

when you raise a power to another power, you multiply the exponents.  (x2)3 = x6.  

Be careful when there are multiple things inside the parentheses.  (xy)3 means  

xy ∙ xy ∙ xy = x ∙ x ∙ x ∙ y ∙ y ∙ y = x3y3. 

 

Conversion Factors and Exponents 

 

Normally we don't include units like pounds or dollars in our algebra notation when there is 

only one type of unit, since it just clutters things up.  But when you need to convert between 

units, you’ll want to keep them around and work with them using regular algebra. 

Suppose you have a value of 330 minutes, and you need to know how many hours that is.  Start 

by creating a simple equation:   

 

1 hour = 60 minutes 

Divide both sides by 60 minutes: 

1hour

60 minutes
 = 

60 minutes

60 minutes
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1hour

60 minutes
 = 1 

The fraction 
1hour

60 minutes
 is called a conversion factor.  You can read it as 1 hour per 60 minutes 

or 1 hour divided by 60 minutes.  Note that we could also have divided both sides of the 

equation by 1 hour, to get 1 = 
60 minutes

1 hour
.  Sixty minutes per hour is also a valid conversion 

factor, but it is not as useful in this particular situation.  The value of a conversion factor is 

always 1.  As you know, you can multiply any number, or even any unknown, by 1 without 

creating a change.  Take the original value of 330 minutes and multiply it by the first conversion 

factor: 

330 minutes  x  
1hour

60 minutes
 

330 minutes

1
 x 

1hour

60 minutes
 = 

330 minutes ∙1 hour

60 minutes
 

Now the unit minutes cancels out: 

330 ∙1 hour

60 
 = 

330 hours

60 
 = 

330

60 
 hours = 5.5 hours 

   

If you arrange your equation so that you are both multiplying and dividing by the unit you want 

to get rid of, it will magically disappear.  When you actually go to do this yourself, you might 

feel slightly confused if you accidentally use the wrong conversion factor:

 

Oops, that doesn't look right.  We don't have something above and below the division line that 

we can cross off.  In fact, we end up with a mess of 19800 min2/hr .  This problem can easily 

be fixed by turning the conversion factor the other way around.  Just as there are 60 minutes 

per hour, there is also 1 hour per 60 minutes, so that is the one you want: 
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You can also convert more complex units, such as miles per hour.  If a high-speed train is 

travelling at 240 miles per hour, how fast is that per minute?  Well, we can just use the 

conversion factor: 

240 miles

1 hour
 x 

1hour

60 minutes
 = 

240 miles

60 minutes
 = 

4 miles

1 minute
 

So, the train is covering a distance of 4 miles in just 1 minute, and its speed is 4 miles/minute. 

Thanks to the Internet, conversion factors are always readily available to you.  

 

 

Conversion factors also work when you need more complicated units like square feet or cubic 

yards.  For example, to find out how many square feet are in 3 square yards, we can use the 

conversion factor 
3 feet

1 yard
 and simply square it: 

3 yards2 x (
3 feet
1 yard

)
2

= 3 yards2 x 
9 feet2

1 yard2
 = 27 ft2 

Don’t forget that when you square 3 feet you get 3 ft times 3 ft which equals 9 ft2, not 3 ft2.  

Draw a picture if necessary to see how that works.  If the side of a square is 3 ft, the area is 9 

ft2. 

 

 

 

Scientific Notation 

 

Visit this website for a thorough explanation of scientific notation: 

http://ieer.org/resource/classroom/scientific-notation 

Scientific notation not only helps with very large numbers; it also gets rid of those potentially 

confusing zeroes at the beginning of numbers.  If you write 0.03880 in scientific notation, it 

looks like this:  

0.03880 = 3.880 x 
1

100
 

http://ieer.org/resource/classroom/scientific-notation/
http://ieer.org/resource/classroom/scientific-notation/
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Because 
1

100
 can be written as 10-2, the actual notation used is 3.880 x 10-2.  Now it is clear that 

0.03880 has 4 significant figures.  The zeros at the beginning of the number are not involved in 

showing how precise the measurement was. 

If you know how to work with exponents, you can easily multiply scientific numbers.  For 

example, (2 x 10-5) x (6 x 10-3) = 2 x 6 x 10-5 x 10-3 = 12 x 10-8.  Because the first number is 10 or 

larger, we have to make it 10 times smaller, which means that 10-8 has to be 10 times larger to 

keep the number the same:  12 ÷ 10 = 1.2, and 10-8 x 10 = 10-8 x 101 = 10-7.  The final answer is 

1.2 x 10-7. 

 

 

Fractional Exponents 

What about exponents that are fractions?  Do they exist?  Let's consider x
1

2 .  We know that 

when we multiply things with exponents, we can just add the exponents.  So, 

x
1

2 ∙ x
1

2  = x
1

2
+

1

2  = x1.   

This means that x1/2  has to represent a number that, when multiplied by itself, is x.  The only 

candidate for this is √x, since √x ∙ √x = x.  There is no other choice than to conclude that  

x
1

2  = √x.  

So what is  x
1

3?  There would have to be a number such that x
1

3 ∙ x
1

3 ∙ x
1

3 = x.  This is the 

number we call the cube root of x, or √x
3

.  By now you can probably guess that x
1

4 is the fourth 

root of x, √x4  .  Creating a general formula:  x
1

n = √xn  or the nth root of x.  

At some point you are going to see some very scary looking fractional exponents, like x
2

3.  Do 

not despair!  Just use your knowledge of fractions to see how such an exponent could have 

been created.  We know that when we raise a power to a power, the two numbers are 

multiplied.  That means that x
2

3 could have been created in two ways:  (x2)
1

3  or (x
1

3)
2

.  

Therefore, x
2

3 = √x23
 = (√x

3
)
2
.  Both these forms mean the same thing.  Because it is more 

trouble to use parentheses, you’ll usually see x
2

3 written as √x23
.  Notice that it is the 

denominator of the fractional exponent that determines what kind of root is involved.  x
3

5 

means √x35
, and x

a

n can be written as √xan
 . 
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Just remember that scary-looking exponents follow the same rules as regular exponents!  If you 

have a complex problem like:  simplify  
x
− 

1
4

x
1
4

 , go ahead and apply the regular rule for division 

which means subtracting exponents:  - 
1

4
 – 

1

4
 = - 

1

2
.  Our answer is x−

1

2 which means 
1

x
1
2

 or 
1

√x
. 

 

Exponent Practice 

1.  Simplify:  
x−3

x−5
 

2.  Show that 
32(2x)−5

x−1x−4
 = 1 

3.  Show that 27-1x-14y-12(3x4y3)4 = 3x2 

4.  5 x 100 =                                

5.  254 = 5? 

6.  Complete the worksheets available at http://ieer.org/resource/classroom/scientific-notation 

Check your answers to questions 4 and 5 with a calculator. 

http://ieer.org/resource/classroom/scientific-notation/
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Roots 

 

√x ∙ √x = x                   x1/2 means √x  and  x1/3 = √x
3

 

x1/n = √x
n

                      xa/n = √xan  

√ab = √a√b    and    √
a

b
 = 

√a

√b
  

To find the simplified square root of a number, break it down into its prime factors. 

√ab
n

 = √a
n

√b
n

     and     √
a

b

n
 = 

√a
n

√b
n      

Caution:  √x2 = |x| 

Use an absolute value sign for all even values of n in the expression √xnn
 = |x| 

You can remove the square root from the denominator of a fraction:  
a

√b
 ∙ 

√b

√b
 = 

a√b

b
 

 

√−1 = 𝑖  

Complex numbers obtained from the quadratic formula always come in pairs:  a + bi and a – bi. 

The magnitude (modulus) of a complex number, |a + b𝑖|, is √a2 + b2 

 

Radical Equations 

Isolate the radical on one side of the equation, and then eliminate it. 

Whenever you are taking a square root, or an even root on both sides, those roots could be 

either positive or negative.  Account for that by putting ± on the right side.   

Check for extraneous solutions!  Always put your solutions back into the original equation. 

If the radical equation looks somewhat similar to a quadratic, you may be able to substitute  

x = (√x)2. 
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Get rid of confusing fractional exponents by raising both sides to the reciprocal power.  Don’t 

forget to use a ± sign when the denominator of the fraction you are using is even!  

 

 

The Latin word for root is “radix”, as in radishes which are the edible roots of a plant, so you’ll 

see roots referred to as radicals.   

 

Square Roots 

 

By definition, the square root of a number is something that can be multiplied by itself to give 

that number:   √25 is 5, because 5 ∙ 5 = 25.  That also means that √25 ∙ √25 = 25, and in 

general: √x ∙ √x = x.  If that doesn’t seem obvious, just try it out with a few real numbers and 

you’ll see that it always works like that.  

While some numbers like 9 and 25 have nice integer square roots, most numbers do not.  Just 

check some random numbers with your calculator to see that their square roots have a lot of 

numbers after the decimal point.  In fact, if a number does not have an integer square root then 

its square root is irrational, which means that it cannot be written as a ratio of two integers.  

You see as many numbers after the decimal point as your calculator can display, but they really 

go on forever.  

All positive numbers have both a positive and a negative square root.  By convention √9 means 

the positive square root of 9 which is 3.  If we want to indicate the negative square root of 9 we 

write -√9.  Negative numbers do not have real square roots.  It is possible to take the square 

root of a negative number by using the imaginary number i, which is defined as √−1.  The 

square of the imaginary number i is -1:  i ∙ i = -1.  We’ll take a closer look at square roots of 

negative numbers at the end of this chapter.   

The first important equation for manipulating square roots is: 

√ab = √a√b   (for non-negative values of a and b) 

By definition, √ab ∙ √ab = ab.  We can easily verify that √a√b is actually the same as √ab, since 

√a√b ∙ √a√b =  √a√a√b√b = ab.  
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Caution:  this simple relationship leads some students to think that √a + b = √a + √b.  You can 

confirm that this is not true by using some real numbers:  √9 + 16 is √25, which is not equal to 

√9 + √16.  You can also prove that it is not true in a general way.  √a + b ∙ √a + b = a + b.  

However, (√a + √b) ∙ (√a + √b) = √a ∙ √a + √a√b + √b√a + √b√b = a + 2√a√b + b.  Not the 

same thing.  √a + b ≠ √a + √b! 

 

The second important equation involves fractions and square roots: 

√
a

b
 = 

√a

√b
            (for non-negative values of a and b) 

Again, we can verify this relationship easily.  
√a

√b
 ∙ 

√a

√b
 = 

√a√a

√b√b
 = 

a

b
.  We can conclude that 

√a

√b
 must 

be the same as the square root of 
a

b
,  √

a

b
.  This last fact means that you can rewrite something 

like 
√125

√5
 as √

125

5
 = √25 = 5. 

When we multiply, we add exponents:  x3 ∙ x2 = x∙x∙x ∙ x∙x = x5.  Just keep that in mind when you 

are looking for something that multiplied by itself is equal to x, or x1:  

 

x? ∙ x? = x1 

 

There is only one thing that we can put for the question mark so that the exponents add to 1.   

x1/2 ∙ x1/2 = x.  Therefore, x1/2 means √x 

When we take the square root of an unknown, like √x, we have to keep two things in mind:  

The value under the square root sign must be positive to start with (unless we allow the result 

to be an imaginary number), and the result is going to be positive.  For example, if you are 

asked to simplify √x2, the first condition is taken care of because x2 is always positive.  

However, the resulting square root is positive, even if x was negative to start with.  By 

definition, √x means the positive square root of x.  [The negative square root of x is written as  

-√x.]  You might be tempted to write √x2 = x, but that doesn’t work so well if x was, say, -3.  To 

make sure that you actually get a positive number you should use absolute value signs:   

√x2 = |x|.   Think of these lines as safety bars that make sure that the square root is positive.  

Use the safety bars all the time as a habit, and then just remove them if you find they are not 

needed.  √4x6 = |2x3|, but 2 is already positive so it doesn’t need safety bars.  Write √4x6 = 
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|2x3| = 2|x3|.  Many times the absolute value sign can be removed completely:  √x8 = |x4| = x4 

since x4 can never be negative. 

For most textbook problems the roots provided in the problem are considered to be real 

numbers rather than imaginary numbers.  If you see something like √x3, you can usually 

assume that x3 is positive or zero.  If x3 isn’t negative, then x cannot be a negative number.  √x3 

= √x2 ∙ x = x√x.  No absolute value sign is used because the question implies that x is positive. 

 

Simplifying Square Roots 

 

 

Using the idea that √ab = √a√b, you can simplify an expression like √50 .  It goes like this: 

√50 = √25 ∙ 2 =  √25 ∙ √2 = 5√2. 

What if the question is a little harder, like:  simplify √420 ?   

The tree method breaks down a number into its prime factors.  The numbers spread out like 

branches of a tree.  You can just divide without worrying about prime numbers.  Here I started 

by dividing 420 by 4, but I could have divided by 2 first, or by 7, or by 10, or anything that 

works.  The end result is always the same - just try it yourself to see that you get the same 

answer. 

 



22 
 

 

The prime factors are like the leaves at the end of the branches.  Circle them when you are 
done and put them in order: 

420 = 2 ∙ 2 ∙ 3 ∙ 5 ∙ 7 

√420 = √2 ∙ 2 ∙ 3 ∙ 5 ∙ 7 = √22 ∙ √3 ∙ 5 ∙ 7 = 2√105 

Another example:  Simplify √1248 

Break down the number 1248 into its prime factors: 

1248 = 3 ∙ 416 

416 = 2 ∙ 208   

208 = 2 ∙ 104.  

104 = 2 ∙ 52.  

52= 2 ∙ 26 

26 = 2 ∙ 13 

This shows that 1248 = 3 ∙ 2 ∙  2 ∙  2 ∙  2 ∙  2 ∙  13.  That is the same as 25 ∙ 3 ∙ 13. 

So,  √1248 = √25 ∙ 3 ∙ 13 = √24 ∙ 2 ∙  3 ∙  13 = √24 ∙ √2 ∙  3 ∙  13  = 22 ∙ √2 ∙  3 ∙  13, which is 4√78. 

Note that the square root of 24 is 22, because 22 ∙ 22 = 24. 

If you need √26, that would be 23, since 23 ∙ 23 = 26.  Just cut any even exponent in half to get 

the square root.  If the exponent is odd, split things up:  √29 = √28 ∙ 2 = √28 ∙ √2. = 24 ∙ √2. 

While it may look fine to us to write something like 
√5

√3
, math teachers get very upset if you 

leave a root in the denominator of a fraction.  For this reason you should always remove such a 

root as soon as you notice it.  Fortunately that can be done easily by multiplying both the top 

and the bottom of the fraction by the offending square root, as follows:  
√5

√3
 · 

√3

√3
,  = 

√5∙√3

√3∙√3
 .  

Since √3 ∙ √3 is just 3, this can be written as 
 √5 √3

3
.  Remembering that √a√b = √ab , we 

simplify that to 
√5∙3

3
. Now our answer is 

√15

3
. 

Do not try to get around having a square root in the denominator by writing 
√5

√3
  as √

5

3
.  Leaving 

a fraction under a square root sign is also not acceptable to math teachers. 
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It is possible to remove a square root from the denominator of a fraction if it appears along 

with a regular number. For the expression 
√x

4 + √3
, you can multiply the top and bottom by  

4 – √3 to take advantage of the difference of two squares [a2 – b2 = (a + b)(a – b)]: 

√x

4 + √3
 ∙ 

4−√3

4−√3
 = 

√x (4−√3)

42− √3
2  = 

4√x− √x√3

16−3
 = 

4√x− √3x

13
 

 

Although it is NOT true that √a + b = √a + √b, regular math does continue underneath the 

square root sign. This may allow you to factor something out of an expression and then move it 

outside the square root sign, like this: √4x + 100 = √4(x + 25). Now you have two things 

under the square root that are multiplied by each other, so you can write √4 · √x + 25 , which 

is 2√x + 25. 

 

 

Cube Roots 

 

Cube roots are easier to manage because we don’t have to worry about positives and 

negatives.  The number under the cube root sign can be either positive or negative, and the 

answer already has the correct sign automatically.  The cube root of a positive number is always 

positive, and the cube root of a negative number is always negative.  No absolute value signs 

are needed when you are taking the cube root of an unknown.  You can manipulate cube roots 

using equations similar to those we used above for square roots: 

√ab
3

 = √a
3

√b
3

     and     √
a

b

3
 = 

√a
3

√b
3     for all positive and negative values of a and b. 

Cube roots can also be indicated by a fractional exponent.  Because x1/3 ∙ x1/3 ∙ x1/3 = x, we say 

that  x1/3 = √x
3

.  You can rewrite the rules above using fractional exponents:   

(ab)1/3 = a1/3 b1/3, and (
a

b
)

1

3
 = 

a
1
3

b
1
3

 

Cube roots can be simplified in the same way as square roots.  For example, √250
3

 can be 

written as √5 ∙ 5 ∙ 5 ∙ 2
3

 or √53 ∙ 2
3

.  We can split that up into √533
 ∙ √2

3
, which simplifies to 5√2

3
. 
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Math teachers don’t like cube roots as denominators either.  Remove them just like for square 

roots.  For something like 
5

√3
3 , you can multiply the top and bottom by √323

.  This has the 

advantage of turning the denominator into something with a nice cube root:   

5

√3
3  ∙ 

√323

√323  = 
5 √323

√333  = 
5 √323

3
 

 

More Roots 

 

Once you understand square roots and cube roots really well, you should not have problems 

with other roots.  For all even values of n, √x
n

 works like square roots do.  Make sure the value 

under the root sign is positive, and remember that the answer is always positive.  √x44
 = |x|.  

Use an absolute value sign first, and then see if it is needed or not.  For odd powers of n, you do 

not need to worry about signs.  You can take the root of a negative number, and the absolute 

value sign is not needed in the answer because it will just be positive or negative as required.  

√x55
 = x. 

As we saw earlier, roots can be represented by fractional exponents.  √x = x1/2  and √x
3

 = x1/3.  In 

general, √x
n

 = x1/n. 

You can also convert radical expressions into fractional exponents.  For example, √16
3

 = √243
 = 

24/3.  Sometimes this form is easier to work with.  To simplify √3410
 ∙ √335

, use fractional 

exponents: √3410
 ∙ √335

 = 34/10 ∙ 33/5 = 32/5 ∙ 33/5 = 35/5= 3.   

When you have a 4th root of a number squared, you can convert that to a simple square root:  

√524
 = (52)

1

4 = 5
2

4 = 5
1

2 = √5.  Just be careful when you do that with an unknown:  √x24
 = (x2)

1

4 = 

√|x|, since the original x could have been a negative number. 

 

Imaginary Numbers 

 

√−1 =  i 
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Once you start using the quadratic formula to solve quadratic equations, square roots of 

negative numbers appear naturally.  For a very long time people refused to even consider these 

roots, probably due to a general dislike of negative numbers.  Finally √−1 was defined as the 

imaginary number i.  This means that i ∙ i = -1.  2i is 2√−1 and 3i is 3√−1and so on.  These are 

valid numbers in their own right, and we can put them on a number line: 

..., -4i, -3i, -2i, -i, 0, i, 2i, 3i, 4i, ... 

When you need to take the square root of a negative number it helps to split the number up. 

√−4 = √4 ∙  −1 = √4 ∙ √−1 = 2i 

2i ∙ 2i = 2 ∙ 2 ∙ i ∙ i = 4 ∙ -1 = -4 

The most common error students make is to say that √−2 is 2i.  If you split the number up it is 

easier to see that this isn’t true: 

√−2 = √2 ∙  −1 = √2 ∙ √−1 = √2 ∙ i 

That last expression can be written as i√2  or (√2)i so you don’t accidentally slip i underneath 

the square root sign. 

Note that √a√b = √ab doesn’t hold when both a and b are negative.  Because we define the 

square root sign as representing the positive square root of a number only, we can’t say that 

√−4 ∙ √−4 is equal to √16, because √−4 is 2i, and 2i ∙ 2i is 4i2, which is -4.  That gives us the 

negative square root of 16 rather than the positive one as indicated by the square root sign. 

 

Example 

Simplify i14 

By definition, i ∙ i = -1.  i4 is i2 ∙ i2, so that would be -1 ∙ -1, which is just 1.  Once you know that  

i4 = 1, you’ll want to use your knowledge of exponents to split up i14 into i4 ∙ i4 ∙ i4 ∙ i2.  Now we 

can see that i14 = 1 ∙ 1 ∙ 1 ∙ -1 = -1. 
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“Imaginary” numbers turned out to have some very practical uses, especially in physics and 

electrical engineering.  It is also fun to leave the boring regular number line and go off in a 

different direction.  The most logical, and most useful, direction for that is at right angles to our 

plain number line.  Having two different number lines at right angles allows us to create a 

number plane. 

The quadratic formula often leaves us with numbers that look like 3 + 2i and 3 – 2i, or maybe 

like 
2

5
 + 

√13

5
 i and 

2

5
 - 

√13

5
 i.  These numbers are called complex numbers.  If you got them from 

the quadratic formula they always come in pairs due to the ± sign in the formula.  Complex 

numbers have a real part and an imaginary part, and we use those parts to place them on the 

number plane.  Measure the real part along the real number axis, and the imaginary part along 

the imaginary number axis:   

 

 

 

Here point A represents 3 – 2i.  Point B is the location of 4 – 3i 

Just like for numbers on a number line, the “size” or modulus of these complex numbers is 

determined by the distance of the number from the origin.  Since distance is always positive we 

need to use the absolute value sign.  (The absolute value sign changes a negative number into a 

positive quantity.  If the number inside the sign is positive or zero, it remains unchanged.) 
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|3 − 2𝑖| refers to the “size” of this number, which is its distance from the origin of the number 

plane.  It is represented by the blue line in the image above.  We find this distance by taking the 

square root of the squares of the individual components according to the Pythagorean 

Theorem: 

|3 − 2𝑖| = √32 + |−2|2 = √13 

|4 − 3𝑖| = √42 + |−3|2 = √25 = 5 

This shows that 4 – 3i has a larger absolute value than 3 – 2i, which makes sense because it is 

located further from the origin. 

 

 

Equations Containing Radicals 

 

Because we use the expression √x to represent only the positive square root of x, we may 

occasionally find that we have extraneous solutions to our equations.  This happens whenever 

the negative square root tries to go along for the ride, usually when we do a squaring operation 

to get rid of a square root.  

Take for example the equation x + 2√x – 8 = 0.  We can easily eliminate the confusing square 

root here by isolating it on one side of the equation and then squaring.  [Why isolate the square 

root first?  Try squaring both sides first so you can see what happens.] 

x + 2√x – 8 = 0 

2√x = 8 – x 

Now square both sides: 

(2√x)
2
 = (8 – x)2 

4x = 64 – 16x + x2    

Rearranging, we get x2 – 20x + 64 = 0. 

 

 

This factors to (x – 4)(x – 16) = 0, giving solutions of x = 4 or x = 16.  When you plug these 

solutions back into the original equation, you see that 16 doesn’t work.  If we allowed √x to 
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also represent the negative square root we could actually make it fit:  16 + 2(-4) – 8 =0, but that 

isn’t how we have defined things.  Mathematicians don’t like surprises, so √x is always 

predictably positive. 

The equation x + 2√x – 8 = 0 is actually easier to solve by substitution because this method 

alerts us to the presence of the negative root.  We substitute x = (√x)2.  Now the equation looks 

like this: 

(√x)2 + 2√x – 8 = 0 

and we can solve it as a quadratic equation.  This equation factors into (√x + 4)( √x – 2) = 0, 

which tells us that √x = -4 or √x = 2.  Since √x is never negative, we can immediately eliminate 

the first solution, so we know that √x = 2 is the only answer.  We can square both sides to get  

x = 4. 

When your equation contains square roots, it is usually relatively easy to solve by squaring, 

although you may have to do that twice for the more complex ones.  If there is a cube root, you 

can raise things to the 3rd power.   You may also encounter equations with potentially confusing 

fractional exponents, but if you take the proper precautions you shouldn’t find them too hard. 

 

Examples 

√x = 5, find the value of x. 

√x = 5 means x
1

2 = 5.   You want x, which is really x1, so 
1

2
 should be multiplied by 2: 

(x
1

2)
2

= 52 

x = 25 

Now try this one:  x
2

3 = 4.    

x
2

3 = 4   means that if you take the cube root of x, and then square the result, you would get 4.  

It also means that you could square x first and then take the cube root, and the result would 

still be 4.  (See “Fractional Exponents” in the Exponents chapter.)  We can remove 
2

3
 by 

multiplying it by the reciprocal 
3

2
.  However, when we multiply by a fractional exponent with an 

even denominator, we’re really taking an even root in order to solve the problem.  In this case 

we are taking a square root, which you can see if we do it in two stages: 
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(x
2

3)
3

 = 43 

x2 = 43 

(x2)
1

2 = (43)
1

2 

Whenever you are taking a square root on both sides, those square roots could be either 

positive or negative.  Account for that by putting ± on the right side: 

x = ±√43   

Remember that you can also write √43  as √4
3
.  Either way the answer is x = ± 8.  Check your 

work by plugging those answer back into the original equation.  The cube root of 8 is 2, and you 

can square that to get 4.  You could also square 8 first, and then take the cube root of 64, which 

is 4 again.  You can do the same with -8.  The cube root of -8 is -2, which squares to give 4.  Or, -

8 squared is 64, and the cube root of that is 4.  To make sure you didn’t miss any solutions, try 

graphing the equation as two functions:  y = x^(2/3) and y = 4. 

 

Here is another example: 

x
4

3 = 81 

(x
4

3)

3

4
 = ± 81

3

4 

Always remember to use a ± sign when taking an even root of a number!  To find the value of 

81
3

4, take the fourth root of 81, and then raise that to the 3rd power.  You could do it the other 

way too, but I would rather not raise 81 to the third power first and then try to find the fourth 

root.   √81
4

 = 3, so ± 81
1

4 = ± 3. 

x1 = ± 81
3

4   

x = ± 33 

x = ± 27 
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Factoring 

Factoring Summary 

 

First:  Take out a common factor 

Always check first to see if you can remove a common factor:  

25x2 + 10x = 5x(5x + 2). 

x3 + 8x2 + 16x = x(x2 + 8x + 16) 

-x2 + 4x – 4 = -1(x2 – 4x + 4) 

 

Factor by Grouping 

Specially designed polynomials can be factored by grouping.  There are usually 4 or 6 terms: 

 

3x3 − 12x2 − 4x + 16 = (3x3 − 12x2) – (4x – 16) = 3x2(x – 4) – 4(x – 4) = (3x2 – 4)(x – 4) 

 

The Difference of Two Squares 

a2 – b2 = (a + b)(a – b) 

x2 – 1 = (x + 1)(x – 1) 

16x2 – 1 = (4x + 1)(4x – 1) 

x4 – 16 = (x2)2 – 42 = (x2 + 4)(x2 – 4) = (x2 + 4)((x + 2)(x – 2)  

 

Simple Factoring 

There is nothing in front of x2: 

x2 + 5x + 6 = (x + 3)(x + 2)   

x4 + 9x2 – 8 = (x2)2 + 9(x2) + 8 = (x2 + 8)(x2 – 1) = (x2 + 8)(x + 1)(x – 1) 
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ac Method 

If there is a number in front of x2, find two numbers that multiply to ac and add to b.  Use those 

numbers to split up the middle term: 

 6x2 – 7x – 5 = 6x2 + 3x – 10x – 5 = (6x2 + 3x) – (10x + 5) = 3x(2x + 1) – 5(2x + 1) =  

(3x – 5)(2x + 1) 

 

Sum or Difference of Two Cubes 

a3 + b3 = (a + b)(a2 – ab + b2 )  or   a3 – b3 = (a – b)(a2 + ab + b2) 

8x3 + 27 = (2x + 3)(4x2 + 6x + 9)    

 

 

Quadratic Equations 

Rectangles have always been important to people.  We build rectangular buildings and farm 

rectangular plots of land.  Practical considerations prompted ancient mathematicians to start 

working with rectangles, and then they just naturally got carried away and discovered 

polynomial equations.  How did this happen, and more importantly, why didn’t they just leave 

things alone? 

What matters to us about our rectangular buildings and fields is their usable area.  If both the 

width and the length of a rectangle are unknown, we could call them x and y and say the area is 

xy.  However, especially for buildings, we usually have some kind of relationship between the 

sides in mind before we start constructing.  Imagine you are a mathematician working for the 

ancient king Mahotep I.  The king wants a new audience hall with an area four times as big as 

the current one.  The architect chooses to have the length of the hall twice as long as the width, 

and the required area is 5200 square cubits (a cubit is approximately the distance from your 

elbow to the tip of your middle finger).  You call the width x, and the length 2x.  The area will be 

2x2 = 5200, so x = √2600.  You look up the square root of 2600 in your table of squares and 

think you are done.  Then the architect informs you that he has to add an extra 2 cubits to the 

width to accommodate five large statues of the king along the western wall, but the required 

area will stay the same.  Your new calculations are:  (x + 2) ∙ 2x = 5200, or 2x2 + 4x = 5200.  Eek, 

you have just discovered the quadratic equation, and now you are stuck solving it too!  You 

divide by 2 to get x2 + 2x = 2600, but now what? How can we find x?  Actually people were able 
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to do this a long time ago, and their methods are still used today. 

 

Simple Factoring Review 

Factoring can help you find solutions to quadratic equations containing only one unknown 

value.  These equations are named after their highest power term, x2 (x squared).  The root 

"quadr" means 4 and "quadrus" means square, since a square has four sides.  Originally these 

equations came from problems involving squares and rectangles.  The general form of a 

quadratic equation is:  

ax2 + bx + c = 0     where a, b and c are constants. 

Now if you try to actually find the value of x for any quadratic equation, you can see that it is a 

bit of a challenge.  Just try 3x2 + 5 – 2x2 = -6x – 3.  Quick, what is x?  Using factoring, we will see 

that there are actually 2 different answers that are both correct.  

The first step in factoring a quadratic equation is to get it in a form you can recognize and deal 

with easily.  If you have an equation like 3x2 + 5 – 2x2 = -6x – 3, you'll never be able to factor it 

until you clean it up a little.  It's sort of like cleaning up your room to help you find something 

you've lost.  The equation rearranges to:  x2 + 6x + 8 = 0.  

 

Next, we have to realize that many quadratic equations are the product of two simple factors, 

like (x + p)(x + q), where p and q can be either positive or negative numbers.  To see how this 

works, do the following multiplications: 

(x + 3)(x + 1) 

(x + 2)(x + 4) 

(x – 5)(x – 6) 

(x + 3)(x – 2) 

In each case, the result is a quadratic expression of the form x2 + ...x + ....  Usually 

mathematicians write these general quadratics as x2 + bx + c.  If you look closely at your 

answers, you'll see that b is always the sum of whatever numbers we picked for p and q, while c 

is always the product of p and q. 

Watch what happens when we multiply just using p and q: 

(x + p)(x + q) = x(x + q) + p(x +q) = x2 + qx + px + pq  
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This can be written as x2 + (p + q)x + pq.  That's always how things work out.  The middle term 

ends up as the sum of p and q [times x], and the last term is the product pq.   

For the equation x2 + 6x + 8 = 0 we need to look for p and q such that p + q is 6, and pq is 8.  The 

only two numbers that fit this description are 2 and 4.  It doesn't matter which one we call p 

and which one we call q, because (x + 2)(x + 4) is the same as (x + 4)(x + 2). 

So now we have changed x2 + 6x + 8 = 0 into (x + 2)(x + 4) = 0.  At first you may not think that 

helps, but 0 has a remarkable property.  If you take two numbers and multiply them to get 0, it 

means that at least one of those two numbers has to be 0.  So either (x + 2) = 0, or (x + 4) = 0, or 

both of them are 0.  This gives us two answers for the value of x:  x = -2, or x = -4.  Plug these 

values into the original equation to see for yourself that they are both correct.   

There is an interesting way to actually see the answers.  We can create the equation y = x2 + 6x 

+ 8.  This gives many points (x,y) for which the equation is true.  At the point where y = 0 we 

should find our answers x = -2 and x = -4.  Use graphing software like MathGV or a graphing 

calculator to confirm this. 

At this point you should stop to realize that while it is very helpful to rewrite x2 + 6x + 8 = 0 as  

(x + 2)(x + 4) = 0, it would not at all be useful to rearrange an equation like x2 + 6x + 8 = 3 into  

(x + 2)(x + 4) = 3.  Here you cannot say that either x + 2 must be 3, or x + 4 = 3, or they are both 

3.  That trick only works with zero!  To solve x2 + 6x + 8 = 3, first rewrite it as x2 + 6x + 5 = 0, and 

then factor it. 

Going back to the problem posed in the previous section, we would like to solve x2 + 2x = 2600.  

That means that all we need is do is to rewrite the equation to say x2 + 2x – 2600 = 0, and then 

find two numbers that multiply to -2600 and add to 2.  Hmmm… 

 

Finding Two Numbers that Multiply to P and Add to S 

Most students have to spend a lot of time finding two numbers that multiply to some product P 

and add to some sum S.  That isn’t as hard as it seems at first, and you’ll find it less frustrating if 

you follow a few simple rules. 

1.  Decide if you are looking for two positive numbers, two negative numbers, or one positive 

and one negative number.   

For example, if two numbers multiply to 15 and add to -8, they would have to both be negative 

to make that work.  If they multiply to 100 and add to 25, they must both be positive.  If the 

two numbers multiply to -2600, there has to be one positive and one negative, regardless of 

what they add up to.   

http://www.mathgv.com/


34 
 

 

2.  If one number is positive and the other is negative, decide which one should be “larger”.   

If you want a positive sum, like 2, the positive number must be a bit larger than the negative 

one.  If the sum should be negative, pick the larger number and give it a minus sign. 

3.  Work systematically. 

Divide the product P by all possible factors in turn.  Always start with 1, so you don’t overlook 

this somewhat obvious possibility!  If it is even, divide it by 2.  Next, remember that a number is 

only divisible by 3 if the sum of its digits is divisible by 3.  If you have divided the product by 2 

and the result is still even, then you can divide it by 4.  If you divide it by 3 and the result is 

even, it is also divisible by 6, and so on.  Eventually you will reach a halfway point, after which 

the numbers repeat in reverse order, so you can stop.  If you don’t have the solution by then, 

you have either overlooked it, or it doesn’t exist. 

 

Example 

Factor x2 – 20x + 84.    

You need two numbers that multiply to 84 and add to -20.  This means that both numbers have 

to be negative: 

84 =  -1 ∙  -84 

-2 ∙  -42 

-3 ∙  -28 

-4 ∙  -21 

-6 ∙  -14 

Only the last two numbers add to -20.  The quadratic expression x2 – 20x + 84 factors to  

(x – 6)(x – 14). 

 

Example 

Factor and solve x2 + 2x – 2600 = 0. 

Here we are looking for a positive and a negative number.  To get a positive sum we have to 

make the positive number larger.  The two numbers are close together in absolute value, so the 

answer should be at or near the end of the possible combinations.  It may seem like there are a 

lot of numbers to try, but there are really a lot you can rule out.  Since the digits of 2600 add to 

8, the number is not divisible by 3.  That means it is also not divisible by 6 since that is 2 ∙ 3, or 
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any other multiple of 3.  After we establish that it is not divisible by 7, any multiple of 7 is out 

too.  11 doesn’t work, so neither will 22 , 33 and 44, and so on.  As shown below, a division by 8 

results in an odd number, so that rules out 16 and 32.  When you find that 17 doesn’t work, you 

don’t need to try 34, etc. 

 

-2600 =   -1 ∙ 2600  =  -13 ∙ 200 

                -2 ∙ 1300                    -20 ∙ 130      

                -4  ∙ 650      -25 ∙ 104 

                -5 ∙ 520                            -26 ∙ 100 

                -8  ∙ 325                           -40 ∙ 65 

                -10 ∙ 260       -50 ∙ 52 

The very last combination is the one that works:  x2 + 2x – 2600 = 0 factors into (x – 50)(x + 52) = 

0, so x must be either 50 or -52.  Because we got this problem from trying to construct a real 

building, x can only be 50 in this case.   

When you already know that your two numbers must be very close in value, you can take a 

shortcut by considering what would happen if they were equal.  In that case you would look at 

√2600, which is about 51.  The most likely numbers will then be -50 and 52. 

                 

                                 

 

 

The Difference of Two Squares 

 

Sometimes your problem doesn't look like the standard quadratic equation, such as x2 – 4 = 

0.  This equation can be solved by writing it as x2 = 4, which means that x is 2 or -2.  It can also 

be solved by factoring.  We do this by using the difference of two squares, which you hopefully 

remember from Algebra 1.   If not, here is a review: 

We can represent the difference of two squares with a paper square. Draw a square with sides 

a. On one corner of this square cut out a smaller square with sides b, which is the yellow area in 

the picture. Get rid of the small square. That is it already:  a2 – b2.  To see that this is the same 

as (a + b)(a – b), cut off one of the rectangular parts that is sticking out, and rotate it 1/4 turn.  

Now lay it against the remaining part to make a rectangle.  The two sides of your rectangle are 

a + b and a – b, so its area is (a + b)(a – b).  
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You can see that the area of the rightmost figure is (a + b)(a – b) 
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This tells you that x2 – 4 = (x + 2)(x – 2).  If  (x + 2)(x – 2) = 0, your answers are also x = -2 and  

x = 2.  It is a good idea to create another graph [y = x2 – 4] to check these answers.   

Another way to look at x2 – 4 is to write it as x2 – 0x – 4.  Now you could factor it by looking for 

two numbers that multiply to -4 and add to 0.  Those numbers are 2 and -2, so the answer 

would still be (x + 2)(x – 2).  Even if you find this approach easier, you should still know the 

difference of two squares for more complex situations. 

When you get to more difficult exams, the difference of squares may be disguised better, like  

1 – (x + 3)2.  Don't get confused; this is still a simple difference of two squares.  It factors into  

(1 + (x + 3))(1 – (x + 3).  Pay careful attention to - signs as you change this to (x + 4)(-x – 2).  

There is also another way to solve 1 – (x + 3)2 = 0.  You can square (x + 3) first, so the equation 

turns into 1 – (x2 + 6x + 9) = 0.  Be careful now; everything in the parentheses has to be 

subtracted from 1.  Doing this carefully, we get 1 – x2 – 6x – 9 = 0, which rearranges to  

-x2 – 6x – 8 = 0.  To get rid of the confusing - sign in front of x2, we divide both sides by -1.  Again 

be very careful; every term has to be divided by -1.  We end up with x2 + 6x + 8 = 0.  Entirely by 

coincidence, this is the same equation we factored earlier in this chapter.  Look back a few 

paragraphs to see that the answers are -4 and -2, which are the same answers we get by 

factoring this as a difference of two squares.   

 

An even more clever way to disguise the difference of two squares is by squaring a square: 

a4 – 24  

If we can recognize this as the difference of two squares we can factor it.  a4 is really (a2)2, and 

24 is (22)2.  Therefore, the equation factors to 

a4 – 24 = (a2 + 22)(a2 – 22) = (a2 + 4)(a2 – 4)  

a2 – 4 can be further factored into (a + 2)(a – 2) 

 

If you don't recognize the problem as either a difference of two squares, or as a standard 

quadratic equation, you can often still factor it.  

Take the equation 15x2 + 5x = 0 for example.  The largest factor that 15x2 and 5x have in 

common is 5x, so you can write the equation as 5x(3x + 1) = 0.  This means that either 5x or 3x + 

1 or both have to be zero.  The answers are x = 0 and x = -1/3.  
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The ac Method and Grouping 

Sometimes the quadratic equation will be presented to you with the middle term split up, like 

this:  x2 + 4x – 5x – 20 = 0.  This is a subtle hint that you're expected to factor the equation by a 

method known as grouping.  Grouping works by taking the four terms on the right side of the 

equation and putting them in two groups:  x2 + 4x – 5x – 20 = (x2 + 4x) – (5x + 20).  Be careful 

when you are placing the second set of parentheses to account for possible sign changes.  

Notice that one of the - signs had to be changed to a + sign.  Next, factor each group separately 

to get x(x + 4) – 5(x + 4).  Because you have x times x + 4 and - 5 times x + 4, you can change 

that to (x – 5)(x + 4) [verify that by multiplying (x – 5)(x + 4) back out].  Therefore the equation 

x2 + 4x – 5x + 20 = 0 factors to (x – 5)(x + 4) = 0, and x has to be 5 or -4.  You'd get these same 

answers if you had added the middle terms up first.  x2 + 4x – 5x – 20 = 0 is the same as  

x2 – 1x – 20 = 0.  Using the standard method you'd look for two numbers that add up to -1 and 

multiply to -20, and again you get (x – 5)(x + 4) = 0.  Correct values for x are 5 and -4. 

Some people prefer a more visual method to handle grouping.  Starting with x2 + 4x – 5x – 20, 

draw a square and place the four terms inside, making sure that the last term is diagonally 

opposite the first: 

 

 

Next, take out the greatest common factors both vertically and horizontally, in the same way 

that we did before.  Place the factors above and beside the square like this: 
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Notice that each little square is now the product of the terms on top and to the right:  x2 is the 

product of x and x, -5x is the product of x and -5, 4x is the product of 4 and x, and -20 is the 

product of -5 and 4.  Add up the parts outside the square to get (x + 4)(x – 5). 

Try this method with the other problems shown in this section, so you can see if you like it 

better. 

Grouping may also work on cubic expressions or equations, so try it if there are 4 terms and 

nothing else to do.  For example, factor 2x3 + 3x2 – 18x – 27.  First place your parentheses 

carefully:  (2x3 + 3x2) – (18x + 27).  Next, take out the largest common factors to get x2(2x + 3) – 

9(2x + 3), which equals (x2 – 9)(2x + 3).   Note that not all cubic polynomials can be factored this 

way. 

Rarely, you may see an expression with 6 terms that can be factored by grouping. 

 

There may be a number in front of x2, as in 2x2 + 10x + 8 = 0.  The first thing to do is to see if you 

can get rid of it.  In this particular case you can divide the entire equation by 2 to get x2 + 5x + 4 

= 0.  This factors as (x + 4)(x + 1) = 0, and the answers are -4 and -1.  If there is no equals sign, 

and you are just asked to factor 2x2 + 10x + 8, put the 2 in front:  2x2 + 10x + 8 = 2(x + 4)(x + 1). 

Potentially confusing is the presence of a minus sign in front of the x, as in  -x2 + x + 2.  

Fortunately this is easy to remove; just factor out -1:  

-x2 + x + 2  

-1(x2 – x – 2) 
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- (x + 1)(x – 2) 

Usually you cannot remove the number in front of x2.  An equation like 6x2 + 17x + 5 = 0 would 

be very hard to solve by guessing.  We need a more systematic approach. 

Let's start by seeing how such a complex equation is created.  The real factors of 6x2 + 17x + 5 

are (2x + 5) and (3x + 1), so we’ll multiply those out to see how they generate the left side of 

the equation: 

(2x + 5)(3x + 1) 

2x(3x + 1) + 5(3x + 1) 

6x2 + 2x + 15x + 5 

6x2 + 17x + 5 

Notice that if only we could take 6x2 + 17x + 5 and go back to the step just before that, 6x2 + 2x 

+ 15x + 5, we could factor by grouping like this: 

6x2 + 2x + 15x + 5 

(6x2 + 2x) + (15x + 5) 

2x(3x + 1) + 5(3x + 1) 

(2x + 5)(3x + 1) 

Aaggh, so close!  But how could we know that the middle term of 6x2 + 17x + 5 was created by 

adding 2x and 15x?  Maybe it was 6x2 + 16x + x + 5 instead.  Does it matter?  Well, let me try to 

factor 6x2 + 16x + x + 5 by grouping: 

6x2 + 16x + x + 5 

(6x2 + 16x) + (x + 5) 

2x(3x + 8) + 1(x + 5) 

Now the two things in the parentheses are different.  It is not possible to combine them into 

two factors.  If you don’t split the middle term up in just the right way things just don’t work 

out.  To see if we can recover those two numbers that should make up the coefficient of the 

middle term, we’ll use the general factors (mx + p) and (nx + q) [where m and n are letters that 

stand for random numbers just like p and q] 

Multiplying these factors gives:   
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(mx + p)(nx + q) 

mx(nx + q) + p(nx + q) 

mnx2 + mqx + npx + pq.   

Since mq and np are just numbers, that would be written as:  

mnx2 + (mq + np)x + pq   

Comparing this with the actual quadratic, 6x2 + 17x + 5, we see that (mq + np) = 17.  The 

numbers that we need to split up the middle term correctly are mq and np, but how to find 

them? 

Every quadratic expression can be written in the form ax2 + bx + c, where a, b and c are positive 

or negative numbers, or b and/or c could be 0.  For mnx2 + (mq + np)x + pq, the number a is mn, 

and the number c is pq.  When we multiply those two numbers, we get mnpq.  However, that is 

also what you get when you multiply mq and np, the two middle numbers we want to find.  This 

tells you that if you multiply the first number and the last number in your quadratic, you get a 

number that the two numbers you want will multiply to.  For 6x2 + 17x + 5, multiplying the first 

and the last number gives you 6 ∙ 5 = 30.  So, to find mq and np, look for two numbers that add 

to 17 and multiply to 30.  After a bit of trial and error you would determine that these numbers 

are 2 and 15.  Now we use these two numbers to work backwards and split up the middle term.  

Write 6x2 + 17x + 5 as 6x2 + 2x + 15x + 5, or 6x2 + 15x + 2x + 5. 

When we write an equation as  mnx2 + mqx + npx + pq, we can factor it by grouping in two 

ways:   

(mnx2 + mqx) + (npx + pq) = mx(nx + q) + p(nx + q) =  (mx + p)(nx + q) or  

(mnx2 + npx) + (mqx + pq) = nx(mx + p) + q(mx + p) = (nx + q)(mx + p) 

We can do the same thing with 6x2 + 17x + 5 in a less abstract way, using the numbers 2 and 15 

that we found by trial and error:   

6x2 + 2x + 15x + 5 = 2x(3x + 1) + 5(3x + 1) = (2x + 5)(3x + 1) 

6x2 + 15x + 2x + 5 = 3x(2x + 5) + 1(2x + 5) = (3x + 1)(2x + 5) 

For a quadratic that has a number in front of the x2, like 6x2 + 17x + 5, the best strategy is to 

find two numbers that add up to the middle number, 17, and multiply to 6 · 5, the product of 

the first and the last number.  This method is called the ac method of factoring because we 
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multiply a and c in the expression ax2 + bx + c.  Although you can factor simpler quadratics 

where a = 1 this way too, that is more work than you need to do! 

Now to solve the original equation.  We have seen that 6x2 + 17x + 5 = 0 is the same as  

(3x + 1)(2x + 5) = 0.  This means that 3x + 1 = 0 or 2x + 5 = 0, giving answers of x = -1/3 or  

x = -5/2. 

There is a shortcut used by some teachers, although it is hard to remember long term.  Learn it 

if you have to, otherwise don’t bother. 

 

You multiply the first and last numbers to get mnpq and put that in the top part of the X.  Put 

the middle number, which represents mq + np in the bottom part of the X.  Find your two 

numbers np and mq, and place them on the sides as shown, above the first number mn.  Then 

simplify the fractions and you will have p, m, q and n.  Here is how it works: 
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m = 3, p = 1, n = 2 and q = 5:  (3x + 1)(2x + 5) 

 

The Quadratic Formula 

 

Usually you first learn to solve quadratic equations by changing them to a form where there is a 

zero on one side, and then factoring them.  This method takes advantage of the fact that if  

a ∙ b = 0, then either a = 0 or b = 0 or both a and b are equal to zero.  For example, if 5 ∙ b = 0 

there is no other choice; b must be 0.  We write the quadratic as ( … )( … ) = 0 and solve the 

parts separately.  Because your textbook carefully selected suitable problems for you, you may 

not have noticed that only some quadratic equations can be solved this way.   

A quadratic equation like x2 – 6x = -4 can be easily changed to x2 – 6x + 4 = 0, but now you can’t 

factor it!  There are no whole numbers that add to -6 and multiply to 4.  That doesn’t mean that 

there are no solutions, but the solutions are not nice numbers.   

Use a graphing app like Desmos, or a graphing calculator to draw a graph of y = x2 – 6x + 4.  You 

can see that this graph is a nice parabola, and it intersects the x-axis at two points.  At those 

points, y is equal to zero, so those are the solutions.  The exact value of x at these points is hard 

to see, but we can calculate it.   

One way to do so is by realizing that the graph is very symmetrical.  If you draw a vertical line 

through the middle you can see that the solutions are at equal distances from the lowest point 

of the graph (the vertex of the parabola).  The x-coordinate of the vertex is right in the middle 

of the x-coordinates of the solutions.  x2 – 6x + 4 = 0 can still be factored into (x + p)(x + q) = 0.  

This equation is true when x = -p and/or when x = -q.  The x-coordinate of the vertex is a 

number that is the average of the roots, -p and -q.   

(x + p)(x + q) = x2 + qx + px + pq 

(x + p)(x + q) = x2 + (p + q)x + pq 

x2 + 6x + 4 = x2 + (p + q)x + pq 

p + q = -6 in this case, meaning that -p + -q = 6.  To get the average of -p and -q we divide that 

sum by 2 to get 3.  Look at the graph to see that the x-coordinate of the vertex is in fact 3.  You 

can see that more clearly by adding the line x = 3 to your graph.  Our solutions lie at equal 

distances from x = 3, but we still don’t know what this distance is.  Let’s just call it d.  The 

solutions will be 3 + d and 3 – d.  Our clue to solving this is that the last number in the 
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quadratic, 4, is the product of p and q.  Since two minus signs cancel in multiplication, 4 is also 

the product of -p and – q.  We can just multiply the two solutions to get 4: 

(3 + d)(3 – d) = 4 

32 – 3d + 3d – d2 = 4 

9 – d2 = 4 

-d2 = 4 – 9  

d2 = 5 

d = √5 

The solutions are x = 3 + √5 and x = 3 – √5  

 

In general, we can solve a quadratic of the form x2 + bx + c = 0 in the same way.  Again, it will 

factor into (x + p)(x + q) = 0.  The average of the solutions is the sum of -p and -q divided by 2.  

Because b = p + q, we use -b and divide by 2.  The solutions are 
−b

2
 + d and 

−b

2
 – d.   

(
−b

2
+ d) (

−b

2
− d) = c 

(
−b

2
)
2

– d2 = c 

-d2 = – (
−b

2
)
2

+ c 

d2 = (
−b

2
)
2

 – c  

d = √(
−b

2
)
2
− c 

The solutions are 
−b

2
 + √(

−b

2
)
2
− c   and 

−b

2
 – √(

−b

2
)
2
− c 
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The quadratic formula can also be derived by completing the square.  Many thousands of years 

ago the ancient Babylonians discovered this method by actually drawing squares to represent 

the squaring of numbers.  The purpose of doing so was to find the area of the square, which 

would tell you the length of the sides, and therefore the value of the unknown x.  It looked like 

this: 

Suppose that you have an equation like x2 + 6x = 91.  You draw a corresponding picture that has 

a square with area x2 and two rectangles with an area of 3x each: 

 

From the original problem, you know that you have just drawn a figure with a total area of 

91.  To complete the square, you have to add a little piece with an area of 3 times 3, or 9.  Once 

you have done that, your figure will be a perfect square with a total area of 91 + 9, or 100.   
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Now that we know the area of the completed square, the solution is obvious just by looking at 

the picture.  The only value for x that would give a completed square with a total area of 100 is  

x = 7.  For cases where it is not immediately obvious, write out what you did: 

x2 + 6x = 91 

x2 + 3x + 3x = 91 

x2 + 3x + 3x + 9 = 91 + 9 

x2 + 6x + 9 = 100 

 

The sides of the completed square are x + 3 long, so its area is (x + 3)2 

(x + 3)2 = 100 

(x + 3) = 10 

x = 7 

Because we are looking at a real square, we cannot consider the negative square root, -10, 

which would lead us to a value for x of -13.  Thousands of years ago people either ignored these 

negative values or considered them evil.  Today we know we can work with them, so the old 

simple method of completing an actual square has fallen out of favor, but the idea is still useful. 

For a simple quadratic equation like x2 + 8x – 20 = 0, we can find x by factoring:   

(x + 10)(x – 2) = 0, so x = -10 or x = 2.  

Completing the square can also be done easily by rewriting the equation as x2 + 8x = 20.  Draw a 

square with sides x to represent x2.  Then split the number in front of the x term, 8, in half to 
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add two pieces with area 4x to your square.  Now you can see that a square piece with an area 

of 16 (sides of length 4) is needed to complete the square.  Add 16 to both sides to get  

x2 + 8x + 16 = 20 + 16.   

x2 + 8x + 16 = 36 

(x + 4)2 = 36 

x + 4 = ±√36 

Your picture should show a square with sides x + 4 and an area of 36.  For that to work out x 

must be 2.  The negative solution gives x + 4 = -6 so x = -10. 

Surprisingly, we can still use the ancient method of literally completing the square when a 

quadratic equation has a negative number in front of the x term.  Let's tackle x2 – 4x = 21.  First, 

we'll draw a square with sides x.  Then we will attempt to subtract 4x by removing 2x from both 

sides: 
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Now there is a problem, since there is not another piece with area 2x to remove.  Let's fix that 

by adding a little piece.  Just remember to add it on both sides of the equation:   

x2 – 4x + 4 = 21 + 4. 

 

 

Since x2 – 4x + 4 = 25, the area that remains after we have added the little piece and taken away 

two strips of 2x is 25.  Each side of the remaining square is x – 2 long, which has to equal 5.  

That means x = 7, and this solution fits the original equation x2 – 4x = 21.  The negative square 

root of 25 is -5, which provides the other solution:  x – 2 = -5, so x = -3. 

If you look at the pictures carefully, you will see that completing the square doesn’t work so 

well when there is a number in front of the x2 part of the equation, like 3x2 + x – 18.  Make sure 

to get rid of the 3 before completing your square.  This is easy to do if you have an equation 

with a zero on one side, since you can divide both sides by 3: 
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3x2 + x – 18 = 0 

x2 + 
1

3
 x – 6 = 0 

Now you need to split 
1

3
 x in half.  To quickly divide 

1

3
 by 2, just shove a 2 underneath the 

fraction line:  
1

2 ∙ 3
.  This makes the fraction 2 times smaller [dividing by 2 is the same as 

multiplying by 
1

2
 ]:  

1

2 ∙ 3
 = 

1

6
.  Add (

1

6
)
2

 to both sides of the equation. 

x2 + 
1

3
 x + (

1

6
)
2

– 6 = 0 + (
1

6
)
2

 

(x + 
1

6
 )2 – 6 = 

1

36
 

(x + 
1

6
 )2 = 6 – 

1

36
 = 

216

36
 – 

1

36
 

x + 
1

6
 = ± √

215

36
 

x = - 
1

6
 ± 

√215

6
 = 

−1±√215

6
 

____________________________________________________________________________ 

If you are asked to complete the square when there is no equals sign, as in 3x2 + 4x – 18, you 

can put the 3 outside parentheses, and work inside those parentheses to complete the square:   

3(x2 + 
4

3
 x – 6)      

4

3
 divided by 2 is 

2

3
: 

3(x2 + 
4

3
 x + (

2

3
)
2

– (
2

3
)
2

 – 6)    Notice the clever trick of both adding and subtracting (
2

3
)
2

. 

3((x + 
2

3
 )2  – (

2

3
)
2

 – 6) 

3((x + 
2

3
 )2 – 

58

9
 ) 

3(x + 
2

3
 )2 – 

58

3
  Be careful to multiply everything by 3, including the last term! 

Note that this was not an equation, so there is no actual solution (no values for x). 

____________________________________________________________________________ 
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The method of completing the square has been generalized as the quadratic formula.  The 

following explanation shows where the quadratic formula comes from.  Instead of solving a 

specific quadratic equation like the ones above, we solve the general quadratic  ax2 + bx + c = 0.  

By doing this we end up with a way to solve all quadratic equations, without having to go 

through all those hard steps each time. 

a x 2 + b x + c = 0   a, b and c are numbers in a quadratic equation 

x 2 + 
b

a
x + 

c

a
 = 0     Divide both sides by the number a  

x 2 + 
b

a
 x + (

b

2a
)
2

+  
c

a
 = (

b

2a
)
2

 Complete the square 

(x + 
b

2a
)
2

 +  
c

a
 = (

b

2a
)
2

   

(x + 
b

2a
)
2

 = (
b

2a
)
2

 –  
c

a
  Subtract c/a from both sides 

(x + 
b

2a
)
2

 = 
b2

4a2
 – 

c

a
    Square the first fraction 

(x + 
b

2a
)
2

 = 
b2

4a2
 – 

4ac

4a2
 Multiply the top and bottom of the second fraction by 4a 

(x + 
b

2a
)
2

 = 
b2−4ac

4a2
   Combine the two fractions 

x + 
b

2a
 = ±√

b2−4ac

4a2
   Take the square root on both sides 

x = - 
b

2a
 ± √

b2−4ac

4a2
   Subtract 

b

2a
 from both sides 

x = - 
b

2a
 ± 

√b2−4ac

√4a2
   √

p

q
 = 

√p

√q
 

x = - 
b

2a
 ± 

√b2−4ac

2a
   Take the square root of 4a2 

𝐱 = 
−𝐛±√𝐛𝟐−𝟒𝐚𝐜 

𝟐𝐚
 Combine the two fractions.  Notice that the fraction line 

extends all the way underneath –b. 
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In Algebra 2, you will often encounter equations that need to have a common factor taken out.  

Always look for this first.  An example would be 4x3 + 16x2 – 8x = 0.  Here there are only three 

terms, but it is not a quadratic equation.  While it is possible to solve cubic equations in general, 

the method is complicated and tedious, and it is not commonly taught anymore.  After all, we 

have graphing calculators and computers now.  So, if you see a cubic equation with three terms 

chances are it has a common factor that can be taken out.  4x3 + 16x2 – 8x = 0 can be written as 

4x(x2 + 4x – 2) = 0.  Since 4x could be 0, this shows that x = 0 is one solution.  The part in the 

parentheses can then be solved by using the quadratic formula.  Your answers from the 

quadratic formula would be x = -2 ± √6.  As for all cubic equations, there are three answers 

altogether. 

 

There may also be scary-looking 4th degree, or quartic, equations or expressions to factor.  If 

there are no common factors, these can usually be handled by a sneaky substitution method. 

x4 – 6x2 + 8 would be so easy to factor if it looked like x2 – 6x + 8.  We can make that happen by 

substituting something like u = x2.  Now we get u2 - 6u + 8, which factors to (u – 4)(u – 2).  Since  

u = x2, that gives us (x2 – 4)(x 2 – 2).   Often we skip the u part and substitute directly, creating 

(x2)2 – 6(x2) + 8, so we can factor straight to (x2 – 4)(x2 – 2). 

Many times at least one of the resulting factors is the difference of two squares, so it should be 

factored further.  (x2 – 4) = (x + 2)(x – 2).   

 

If you have an equation rather than an expression, as in x4 – 6x2 + 8 = 0, you can write  

(x2 – 4)(x2 – 2) = 0.  Then you can say that (x2 – 4) = 0 so x2 = 4, and (x2 – 2) = 0 so x2 = 2.  The 

solutions are x = ± 2 and x = ± √2.  

Any 4th degree expressions with only two terms are usually the difference of two squares: 

x4 – 16 can be written as (x2)2 – 42, which factors to (x2 + 4)(x2 – 4).  Note that one of these 

resulting terms is also the difference of two squares, so we get (x2 + 4)(x + 2)(x – 2).  It is not 

uncommon for test questions to disguise the difference of two squares by multiplying both 

terms by some other factor.  For example, 3x4 – 48y4 should be rewritten as 3(x4 – 16y4).  Now 

you can see the difference of two squares:  3((x2)2 – (4y2)). 

 

The Quadratic Formula and Factors 

 

Factor 21x2 – 29x + 10.   
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To factor this you need two numbers that multiply to 210 and add to -29.  It takes a fair bit of 

work to find these numbers, which are -14 and -15.  If you have a calculator handy you may 

want to use the quadratic formula instead.  All quadratic equations that have real number 

solutions can be solved this way.  When you do that the answers you get are 2/3 and 5/7, but 

now what?  Remember that the quadratic formula gives you the values for x that make  

21x2 – 29x + 10 equal to zero.  In this case, it tells you that x = 2/3 or x = 5/7.  Do not be 

tempted to write (x – 
2

3
)(x – 

5

7
) = 0!  Multiplying this out would give you x2 – 

29

21
x + 

10

21
 = 0, which 

is a polynomial equation that has the same zeroes as 21x2 – 29x + 10.  [You can see that if you 

divide both sides of 21x2 – 29x + 10 = 0 by 21.] 

 

Instead, take the equations for x and rearrange them to get the actual factors:   

x = 
2

3
, so 3x = 2 and 3x – 2 = 0.   

x = 
5

7
, so 7x = 5 and 7x – 5 = 0.   

Now we can write (3x – 2)(7x – 5) = 0, and the factored form of the expression is  

(3x – 2)(7x – 5).   

Note that this is really also what you should do when you get whole number values for x, like 

for example x = 4 and x = -5.  Rearrange to get x – 4 = 0 or x + 5 = 0, and write the factored form 

as (x – 4)(x + 5).  

For x2 + 4x – 2 = 0, your answers from the quadratic formula would be x = -2 ± √6.  If you are 

looking for factors rather than answers, you could write:   

x = -2 + √6 ,  so x + 2 – √6 = 0 

x = -2 – √6 ,   so x + 2 + √6 = 0 

That means that x2 + 4x – 2 could potentially be written like this:   (x + 2 – √6)( x + 2 + √6 ).  You 

should multiply this out to see that it is correct.  Fortunately teachers rarely ask for factors that 

contain radicals.  Something like x2 – 2 could also be factored further as (x + √2 )(x – √2), but 

again that is usually not required.  

 

If you find values for x, substitute them into the original equation to see if they are correct.  Be 

careful, since you could be missing one of the solutions and not know it. 

When you don’t have an equation and you are just factoring an expression, multiply your 

factors back out to see if you get the original expression back. 
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If you have solved a quadratic equation by factoring, also use the quadratic formula to check 

your answers.    

For any polynomial equation, use a graphing calculator or graphing software to check the zeros.  

The function crosses or touches the x-axis at these points.  The “CALC” function on your 

graphing calculator will help you find the exact points.  If you are using math GV you have to 

zoom in on the point and use the mouse marker values to estimate the point’s location.  (If you 

zoom in a lot you can get accuracy up to two places after the decimal point.)   

 

 

The Sum or Difference of Two Cubes 

 

Another change from Algebra 1 is that you may encounter the sum or difference of two cubes: 

a3 + b3 = (a + b)(a2 – ab + b2) 

a3 – b3 = (a – b)(a2 + ab + b2) 

As an example, let’s find x if 8x3 + 27 = 0.  To use the formula above, just rewrite this as the sum 

of two cubes: 

(2x)3 + 33 = (2x + 3)((2x)2 – 6x + 32) = 0 

(2x + 3)(4x2 – 6x + 9) = 0 

Either (2x + 3) = 0 or 4x2 – 6x + 9 = 0 

That last equation can be solved using the quadratic formula:  x = 
−b±√b2−4ac 

2a
 

x = 
−(−6)±√(−6)2−4(4)(9) 

2(4)
 = 

6 ±√36−126) 

8
 = 

6 ±√−90 

8
 = 

6 ±√−1 ∙ 9 ∙10 

8
 = 

6 ± 3i√10 

8
 

 

The difference of two cubes can be found by actually taking a cube with sides a and removing a 

little cube with sides b from it at one of the top corners.  When you do that, the remaining 

volume can be found as follows:   

On the bottom there is a volume of the height,(a – b), times the bottom, a2. 
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The part above that has height b.  Looking at this from the top, you can divide that into two 

sections:  a smaller section with top area b times (a – b), and a larger section with top area a 

times (a – b). 

The total volume is found by adding up these three sections: 

a2(a – b) + b2(a – b) + ab(a – b) = (a – b)(a2 + ab + b2) 

Once you have found the difference of two cubes by simple geometry, you can derive the 

formula for the sum of two cubes by substituting –b for b in the equation a3 – b3 = (a – b)(a2 + 

ab + b2): 

a3 – (-b)3 = (a – - b)(a2 + a(-b) + (-b)2) 

a3 – –  b3 = (a + b)(a2 – ab + b2) 

a3 +  b3 = (a + b)(a2 – ab + b2) 

If you have already learned about imaginary numbers, you can now find two complex cube 

roots for every number that has a nice cube root.  For example, we know that √8
3

= 2, but let’s 

set it equal to x just for fun:  √8
3

= x.  Then raise both sides to the third power:  (81/3)3 = x3, 

which means that 8 - x3 = 0.  Hey, we can write that as the difference of two cubes:  23 – x3 = 0, 

and this factors as (2 – x)(x2 + 2x + 22) = 0.  One of the answers is x = 2 as we would expect.  The 

other two answers come from using the quadratic formula to solve (x2 + 2x + 22) = 0.  We get x = 

−2 ±√4−16

2
, which works out to 

−2 ±√−12

2
 = 

−2 ±√−3∙4

2
 = 

−2 ±2√−3

2
, so the answers are x = -1 + 

i√3 and -1 – i√3.   

23 = 8, (-1 + i√3)3 = 8, and (-1 – i√3)3 = 8. 

 

 

The idea of the difference of two cubes may have played an important role in a historical 

mystery.  The ancient Egyptians knew a lot about pyramids.  They were apparently able to 

determine that the volume of a pyramid is 1/3 that of the rectangular box that would contain it.  

They did many calculations involving pyramids, and surprised today’s mathematicians by 

finding a formula for the volume of a square pyramid that has its top cut off.  No records 

survive to show how they accomplished this, but it seems amazing that they would come up 

with a formula like1/3 H(S2 + Ss + s2) when they didn’t know algebra.  In this formula, H is the 

height of the cut-off pyramid, S is the bottom side, and s is the top side.  Today we can use 

algebra to find this formula.   
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The top part of a pyramid may be smaller than the whole, but it has the same proportions as 

the original pyramid.  So, if we have a cut-off pyramid with a base of S2 and a top surface of s2, 

the original pyramid would have had a height of kS (where k is some constant) and the small 

pyramid that was cut off the top would have a height of ks.  To solve this in a general way we 

can start with blocks.  Take a rectangular block with base S2 and height kS.  Then remove a 

smaller block with base s2 and height ks.  The result can be expressed like this: 

kS ∙ S2 – ks ∙ s2 

That is equal to k(S3 – s3), which we know factors as k(S – s)(S2 + Ss + s2).  Change that to  

(kS – ks)(S2 + Ss + s2), because kS – ks represents the height of the bottom part of the pyramid.  

Now take 1/3 of this volume to account for the fact that we are dealing with pyramids rather 

than blocks.  The formula is 1/3 H(S2 + Ss + s2), where H is the height of the cut-off pyramid. 

But how did the ancient Egyptians figure that out?  They didn’t know algebra!  Were they 

contacted by aliens who supplied them with the correct formula?  No one really knows what 

happened, but the only example that we found solves for the volume of the bottom half of a 

pyramid with base 4 and height 12.  Here is a hypothetical story that might explain how the 

Egyptians found the solution.   

I know when I cut a square pyramid out of a block of clay, the volume of that pyramid is 1/3 of 

the block.  More of that volume is in the bottom half.  I wonder: what could be the volume of the 

bottom half of the pyramid?  Let’s start with a fresh block of clay.  Hmm, I could cut out a 

pyramid and then cut it in half, but that’s a lot of work and it would be hard to find the volume 

of the bottom piece when I’m done.  Why don’t I just leave the block and remove from it a block 

that would contain the top piece of the pyramid.  How big would that smaller block have to be?  

Well, if I’m cutting the pyramid exactly in half, the top piece would still have the same 

proportions as the original.  Let’s say the original pyramid is 4 units by 4 units on the bottom, 

and 12 units high.  Then the top half would be 2 units by 2 units on the bottom and 6 units high.  

I can just remove a 2 by2 by 6 block that would contain the top part.  Ugh, that would be hard to 

cut out of the middle of the block.  I’ll take it out of the top corner instead.  There, I took a block 

that contained the original pyramid, and removed a block that contained the top half.  The top 

half of the pyramid was 1/3 of the block I removed.  1/3 of the remaining shape is the bottom 

half of the pyramid.  Now, what is the volume of the remaining clay?  The bottom area is the 

square of the base, so 4 times 4.  On the top surface we have 2 squared and 2 times 4.  The 

height of each piece is 6, so the total is 6 times (16 + 4 + 8).  Now take a third part of that, which 

is 2 times (16 + 4 + 8).  That’s 56.  I can see that it is right, because the volume of the original 

pyramid was 1/3 times 12 times 42, and I removed the top part with volume 1/3 times 6 times 

22.  That is 64 – 8 = 56.  The general formula must be 1/3 of  H times (S2+ s2+ sS). 
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Factoring with Fractional Exponents 

Fractional exponents are really no different than regular exponents, but because they look 

more complicated you may not find it as easy to factor them out. 

x5 + x2 factors as x2(x3 + 1).  What you are doing here is dividing both terms by x2.  An expression 

like x3/2 + x1/2 factors in the same way:  just divide both terms by x1/2.  When you divide you 

subtract the exponents, so x3/2 + x1/2 factors as x1/2(x + 1), which is the same as √x(x + 1). 

 

Calculator Programs 

Factoring can be a real pain.  You often have to find two numbers that add up to something and 

multiply to something else, which is hard if those numbers are large.  If you own a TI-84 or 

similar calculator you may want to program it to do this for you.  The idea behind this is that we 

can use algebra to find the numbers we want.   

Suppose that I am factoring 6x2 + 25x + 26.  Now I need two numbers that add up to 25 and 

multiply to 6 times 26, or 156.  I can call these numbers x and y, and write two equations: 

x + y = 25 

xy = 156 

This system of equations is easy to solve by substitution.  Let’s eliminate y, by saying that  

y = 25 – x.  Now substitute that into the second equation to get 

x(25 – x) = 156 

25x – x2 = 156 

-x2 + 25x – 156 = 0 

x2 – 25x + 156 = 0 

Hmm, that looks like an equation that can be solved by using the quadratic formula, which is 

easily programmed into a calculator (see later in this section).  It can tell you that there are two 

possible values for x which are 12 and 13.  Those are the numbers you want. 

Now try solving this in a general way.  Let x + y = the sum, and xy = the product: 

x + y = S 
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xy = P 

We can eliminate either x or y, with the same result.  Let y = S – x, and substitute that into  

xy = P.  You get 

x(S – x) = P 

Sx – x2 = P 

-x2 + Sx – P = 0 

x2 – Sx + P = 0. 

Remember that S and P are just numbers.  Plug them into the quadratic equation: 

 x = 
−b±√b2−4ac

2a
 = 

−(−S)±√(−S)2−4P

2
 = 

S±√S2−4P

2
 

Here is a sample program for the TI-84: 

PRGM → NEW → ENTER 

Use the ALPHA function of your calculator to enter a name for the program, up to eight 

characters long.  This same function is used to enter text or variables in your program.  

Commands are actions that the program must perform.  They are entered by pressing the 

PRGRM key.  Each separate line in your program starts with “:”, which the calculator puts in for 

you when you hit the enter key.  When you tell the program to display a particular variable it 

will display the numerical value stored in that variable.  This numerical value can be entered by 

the user through the Prompt command, or through calculations performed by the program. 

: Prompt S,P     [The Prompt command is in PRGM → I/O which stand for Input/Output] 

: S2 – 4P STO→A     [Use the STO key.  This stores the value of S2- 4P in the variable A] 

: If A<0                  [The If command is in PRGM → CTL, which is already open as soon as you      

hit PRGM.  The Then and Else commands are found in the same place.   The < symbol is in TEST, 

which is located just above the MATH key] 

: Then 

: Disp “No Real Solutions” [Disp is in PRGM → I/O.  Note that the text is in quotation marks.] 

: Else 

: (S + √(S2 − 4P))/2 STO→B 

: (S - √(S2 − 4P))/2 STO→C 

: Disp B,C 

: End                              [In PRGM → CTL.] 

Leave this screen by entering QUIT [2ND → MODE] 



58 
 

 

To run your program, press PRGM → ENTER, and ENTER again.  The display should show S=?  

Enter the sum of the two numbers and press ENTER.  The display will then show P=?  Enter the 

product of the two numbers.  Press ENTER to see the two numbers. 

If your program doesn’t work, you’ll have to edit it.  Go to PRGM → EDIT, and check carefully 

for any errors. 

 

To use the TI-84 with the general quadratic formula, try the following program: 

:Prompt A, B, C 

:(B2 – 4AC) STO→D 

:DISP “          SQRT”                  [Leave some spaces by pressing ALPHA → 0 for the space symbol] 

:DISP D 

:If D<0 

:Then 

: Goto 10                                    [Goto is in PRGRM.  Bypasses the next calculations if D is negative] 

:Else 

:-B – (√B2 − 4AC) STO→E 

:2A STO→F 

: -B + (√B2 − 4AC) STO→G 

:DISP E/F  ⦊Frac                              [⦊Frac is located in MATH, and displays the answer as a fraction] 

:DISP G/F ⦊Frac 

:DISP E/F 

:DISP G/F 

:Lbl 10                                              [Lbl is in PRGRM] 

:END 

First, the program will display the value under the square root sign, so you can check on your 

manual calculations.  If this value is negative no answers are displayed.  If the answers are 

integers, the program will display them twice.  Otherwise, the answers will be shown as 

fractions first, and then as decimal numbers. 

 



59 
 

 

Functions 

 

You can replace f(x) with y to graph a function, or to make it easier to work with. 

A function should not have more than one y-value for any x-value.  A vertical line should not 

touch the graph in more than one spot. 

A function may have two or more x-values that produce the same y-value. 

The x-values are the domain (input), and the y-values are the range (output). 

The x-intercept occurs where y = 0, and the y-intercept occurs where x = 0. 

A one-to-one function has a unique y value for every x, so if you reverse it (switch the x and y 

values) you still get a function.  Use the horizontal line test. 

An onto function uses all of the possible y’s. 

A function can be both one-to-one and onto, which makes it easy to reverse without having to 

worry about the domain of the new function. 

 

 

 

The word “function” appears in this e-book nearly 500 times, which probably means that is a 

fairly important concept that you should be familiar with.  The topic of functions is also 

included in college admission tests.  What you need to know is that a function is a special 

relationship between two quantities.  Each separate “input” has a unique “output”.  A simple 

function is y = x2.  For every x (the input) you select, you get one, and only one, value of y (the 

output).  If you pick x = 3, y will be 9, which is the same value you get if you select -3 for x.  That 

last part isn’t a problem, because the output value is always predictable.  However, a relation 

like x2 + y2 = 100 is not considered to be a function because almost every value of x results in 

two different outputs for y.  There is not a single predictable output when you insert a value for 

x.  For example, if x is 6, then 62 + y2 = 100 and y2 = 64.  Now there are two values for y:  8 and  

-8.  This relation graphs as a circle with a radius of 10.  It can be rearranged as follows and split 

into two functions: 
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x2 + y2 = 100 

y2 = 100 – x2 

y = √100 – x2 or y = -√100 – x2 

The input value for a function is usually called x, but you may see other letters.  When time is 

one of the quantities, people usually use t as the input variable.  The output value may be called 

y, especially when the function needs to be graphed.  However, there are some disadvantages 

to that.  Suppose that you have two different functions, such as y = x2 – 10 and y = 2x + 1.  If you 

are working with both functions at the same time, you might call the output of one function y1, 

and the other one y2.  Subscripts like that are a bit of a pain to type, which makes them less 

useful for computer programmers who need functions in their code.  There is also another 

problem.  Let’s pick a value of 5 for x in the function y1 = x2 – 10.  When you are done 

calculating, your output says y1 = 15, with no indication of what value of x you put in.  If a 

function is really complicated it would be hard to guess the input just by looking at the output.  

You might want to add something, like:  y1, when x is 5, = 15.  That works, but it looks awkward. 

Function notation solves the problems associated with the x-y method of expressing functions.  

Instead of y we use the letter f, for function.  When we have a second function, we can use g, 

and even h for the third.  Just change y1 = x2 – 10 and y2 = 2x + 1 to f = x2 – 10 and g = 2x + 1.  

There, that takes care of those subscripts.  Now, instead of writing: f, when x is 5, = 15 , we’re 

just going to use some parentheses:  f(5) = 15.  This still means the same thing:  when x is 5, the 

output of the function is 15.  To shorten what we are saying when we read that out, we say that 

“f of 5 equals 15”, but you’re welcome to read it the long way as “f, when x is 5, equals 15”.  

Notice that f(6) equals 26, and f(x) = x2 – 10.  Students sometimes find it confusing that there 

are multiple x’s in this last expression, but just remember that once you pick a value for x, it is 

the same everywhere.  So, if x = 3, then put that into the function expression everywhere for x:  

f(3) = 32 – 10.  

Whenever you feel confused by scary-looking function notation, or if you need to graph a 

function, just change it back to regular x-y notation: 

f(x) = 15x3 – 2x + 3      is the same as      y = 15x3 – 2x + 3 

 

Domain, Range and Intercepts 

You also need to know that functions have a domain and a range.  The word domain means an 

area that is controlled by someone or something.  The domain of a function consists of all of 
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the input values that the function is able to use and produce an output for.  The domain is all of 

the x-values.  The range of a function indicates all of the possible output values.  The range is all 

of the y-values.  The x-intercept is the point where the function crosses the x-axis.  That always 

happens when y is zero, so the coordinate of the x-intercept looks like (x, 0).  The y-intercept is 

the point where the function crosses the y-axis, so x is zero.  The coordinate of the y-intercept 

looks like (0, y). 

 

Example 

Find the domain, range, and the intercepts for y = √x + 4. 

Because the square root of a negative number is an imaginary (i) number, we don’t want that in 

our functions.  So, we need to make sure that there will be no negative number under the 

square root sign.  Zero is fine, because the square root of zero is just zero:  0 ∙ 0 = 0, so √0 = 0.  

To get a positive number or zero, x needs to be -4 or greater.  The domain is all numbers 

greater than or equal to -4.  Depending on what your teacher prefers, you can write this as x ≥ -

4, or as the interval -4 to infinity:  [-4, ∞).  Here the square bracket, [, indicates that -4 is 

included in the interval.  Infinity is not actually a number, so it is never included. This is 

indicated by an open bracket, ).  The y-intercept occurs when x is 0:  y = √0 + 4.  They-intercept 

point is (0, 2).  The x-intercept occurs when y is zero:  0 = √x + 4, so x should be -4.  The x-

intercept point is (-4, 0). 

 

Finding the Domain and Range 

 

In most cases it is not very difficult to determine the domain and then find the range of possible 

output values of a function.  Some functions have a restriction on their domain, for example  

f(x) = √x.  Because the functions we deal with involve only real numbers, no negative value may 

appear under the square root sign.  The domain is the interval [0, ∞), and as output it will 

return values that are anywhere from zero to positive infinity for all possible values of x in the 

domain.  If you are lucky your course may only ask you to determine the domain and range of 

fairly simple functions.  Examples of increasing complexity are provided here for you to use as 

needed. 

 

Example 

Find the domain and range of the function f(x) = √x2 − 9. 
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Because of the square root in this function, there is a restriction on the domain.  x2 – 9 must not 

be negative.  Start by saying that x2 – 9 ≥ 0.  Therefore, x2 ≥ 9.  Be careful when you take the 

square root on both sides because the inequality sign complicates things a bit.  If x2 = 9, we just 

consider that there is both a positive and a negative square root of 9, and write that x = 3 or -3.  

The negative possibility will flip the inequality around, so that x ≥ 3 or x ≤ -3.  Now that you 

know how to actually take the square root of x2, you can write that like this: 

√x2 ≥ √9 

|x| ≥ 3 

x ≥ 3  or - x ≥ 3 

x ≥ 3  or  x ≤ -3 

The domain is (-∞, -3] ∪ [3, ∞).  The two intervals are joined by a “union” sign. 

Since the smallest value for x2 – 9 is 0, the range is the interval [0, ∞).  In your own work use 

your teacher’s preferred notation to indicate the domain and range. 

 

Example 

 

Find the domain and range of the function f(x) = √x2 + x. 

To make sure that the part under the square root sign is not less than zero, we have to find 

where x2 + x would be less than zero. 

x2 + x < 0 

x2 < - x 

Before you divide by an unknown like x, think carefully!  First, x must not be zero when you 

divide by it.  Here we can rule out a zero value for x because 02 is not less than -0.  Now, if x is 

positive we can divide by x without changing the > sign: 

For x > 0, a division by x gives the result x < -1.  Notice there are no solutions to this, since no 

positive number is less than -1. 

If x is negative, the > sign changes to < when we divide by x: 

For x < 0, x > -1.  The solutions for this are -1 < x < 0.  These are the values that have to be 

excluded from the domain. 
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The domain is (-∞, -1) ∪ [0, ∞).  The range can’t be negative because this is a square root 

function.  The smallest possible output is 0, when x2 + x = 0.  There is no limit on the largest 

possible output.  The range is [0,  ∞). 

 

 

Example 

Find the domain and range of f(x) = - 
3

4
 √5x2 − 1
3

 + 2. 

It is more difficult to imagine the range of a complex function, so we would like to determine it 

in a systematic way.  The nice thing about this function is that there are no restrictions on the 

domain (the possible input values), because there is a cube root which is fine to use with 

negative values.  The domain is the interval (-∞, ∞).  We can just imagine putting large negative 

numbers, 0, or large positive numbers into the function.  It is easiest to decompose this 

function into several parts.  Isolating the cube root first is not so helpful, because its output can 

be anywhere from – infinity to + infinity.  We have to start by considering the range of what we 

are taking the cube root of.  First let’s look at the range of 5x2, which is of course 0 to + infinity.  

Next look at the range of 5x2 – 1, which is -1 to + infinity (subtracting 1 from infinity doesn’t 

really make a dent in it).   

Next we can take the cube root of all of these numbers.  The cube root of -1 is -1, which is the 

smallest possible output here.  Taking the cube root of + infinity (so to speak) still leaves you 

with + infinity.  The range is still -1 to + infinity. 

After this, we have to multiply by - 
3

4
.  The result of this operation ranges from 

3

4
 to - infinity, 

which is more properly ordered as -∞ to  
3

4
.  The last thing that needs to be done is to add 2, 

which brings the range to:   - ∞ to (and including) 2
3

4
, or (- ∞, 2

3

4
] which is our final answer. 

 

Example 

Find the domain and range of f(x) =  − 
1

2
 √3x2 − 3 + 4.   

This function has a restriction on its domain due to the square root.  No negative number may 

appear under the square root sign, so 3x2 – 3 must be positive or zero: 

3x2 – 3 ≥ 0 

  

3x2 ≥ 3 
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x2 ≥ 1 

√x2 ≥ √1 

|x| ≥ 1 

x ≥ 1  or - x ≥ 1 

x ≥ 1  or  x ≤ -1.  The domain therefore excludes the interval (-1,1), but that doesn’t keep the 

range from going all the way from 0 to + infinity for the part with the square root.  The 

restriction on the domain doesn’t affect the range.  Multiply this range by - 
1

2
  to get  

0 to - infinity.  (Cutting infinity in half doesn’t make a dent in it either!)  Turn that around to get 

- ∞ to zero, and add 4 which leaves you with – infinity to 4, or (- ∞, 4]. 

 

For additional information, see “Range of a Rational Function”. 

 

 

One-to-One Functions 

A relation can’t be a function if a given x value can produce more than one y-value, but the 

other way around isn’t a problem.  For y = x2, two different x values can have the same output.  

f(3) = 9 and f(-3) = 9.  That is fine so long as you don’t have to turn the function around.  Later 

on we will look at inverse functions which flip the original around.  In the case of y = x2, the 

inverse would be x = y2, which can also be written as y = ± √x.  This is not a function, as we 

could have predicted from the fact that the original function has the same output for different 

x-values.  If you want a function to be reversible then it has to be one-to-one, which means that 

every x has a unique y as its output.  For example, y = x + 5 produces a unique y for every x.  We 

can flip that around to get x = y + 5, which rearranges to give y = x – 5.  Notice that this inverse 

function does the opposite of what the original function does.  Adding 5 turns into subtracting 

5.  The inverse relation y = x – 5 is a function because the original function was one-to-one.  To 

see if a function is one-to-one, use the horizontal line test.  A horizontal line should only touch 

the graph in one spot if there are no two x’s that have the same y-value.  

Some one-to-one functions can create a bit of a surprise when they are reversed.  The graph in 

the picture below is a function because there is only one y for every x.  It is also one-to-one 

because each x has a unique y.  No two x’s share the same y value.  It should be reversible.  

However, if you look at the left side of the graph, you can see that this function appears to have 

no intention of crossing the x-axis.  In fact, the y values keep getting smaller and smaller but 
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never reach zero.  The function actually never produces a negative output.  That means that its 

inverse function will not be able to take negative inputs.  Obviously a function like this is lacking 

some property that was present in the previous function, y = x + 5.   

 

 
 

Onto Functions 

What is missing in the function shown above is that it doesn’t produce some of the y-values 

that other functions do.  It takes both positive and negative x-values and maps them to only the 

positive y’s.  A function that does use all the y’s is called an onto function.  It maps a set of x’s 

onto a set of y’s so that all of the possible y’s are used.  A rather lame trick for turning the 

above function into an onto function is to specify that the set of possible y’s should only include 

the positive real numbers.  That isn’t really necessary because there are plenty of functions that 

are clearly onto functions without using special definitions.  Any simple linear function like  

y = x + 1 will cover all possible y-values.  So will functions that have an odd power of x, like y = x3 

or y = x5 + 7.  Many functions that you might initially think of when you are looking for an onto 

function are also one-to-one functions.  They have both a unique y for every x, and every 

possible y has a unique x.  That is a good thing because these functions are easily reversible to 

create a good inverse function without having to worry about the domain. 

Some onto functions are not one-to-one.  Even if a function covers the entire range from 

negative infinity to positive infinity, it may have one or more bumps along the way that cause 

some of the y-values to be duplicated.  The graph below shows a function that is onto, but not 

one-to-one.  This particular function is y = x3 – 3x2 – x + 3: 
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More About Functions 

 

An even function is symmetrical around the y-axis.  f(x) = f(-x). 

An odd function has a graph that is the same if it is rotated 180⁰ around the origin.  f(x) = -f(-x). 

To find an inverse function, simply switch x and y, and then solve for y. 

The range of the original function becomes the domain of the inverse function. 

f ◦ g means “f composed with g, which is f(g(x)).  Use the output of g as the input for f.  Be 

careful about the domain of the new function. 

 

 

Even and Odd Functions 

When you get to calculus, you will be determining the area between the curve of a function and 

the x-axis.  For the function f(x) = 0.25x2, the area under the curve between -5 and 0 is exactly 

the same as the area between 0 and 5.  When you look at the graph you can see why:  y = x2 is 

symmetrical around the y-axis.  Many functions are symmetrical like this so it is often faster to 

calculate half the area (starting at 0) and then double it.  The area marked in green is equal to 

the area marked in blue: 
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You can recognize even functions fairly easily, because they all have the property that  

f(x) = f(-x).  Just put -x into the function in place of x and see if you get the same result.  For 

example, f(x) = x4 + 2x2 + 11 gives the same output for x = 2 as for x = -2, due to the even 

powers on x. 

Functions that have equal areas above and below the x-axis are called odd functions.  If you 

rotate the graph around the origin 180 degrees, it looks exactly the same.  Odd functions are 

also easy to spot because f(-x) = - f(x).  The output for x = 2 is the opposite of the output for  

x = -2.  A function with only odd powers of x is odd, like y = x5 – x3.  For f(x) = x3, f(2) is 8 and  

f(-2) is -8.  The graph below shows another odd function, y = √x
3

.  The cube root of 8 is 2, 

because 2 ∙ 2 ∙ 2 = 8.  The cube root of -8 is -2 because -2 ∙ -2 ∙ -2 is -8. 

 

 

 

 

Inverse Functions 

The inverse of a function is a process that “undoes” the operation of the function.  If function f 

adds 2 to x, the inverse of f subtracts 2 from x.  So, if f(x) = x + 2, and g(x) = x – 2, then these 

functions are inverses of each other.  You can check this by picking a random value of x, say 5, 

and inserting it into the function f.  The result is x + 2, or 7.  If you then insert this result as the 

x-value for function g, the output is 7 – 2 = 5, the value you started with.  The inverse of a 

function f is often written as f-1.  Note that here -1 does NOT indicate an exponent.  f-1(x) is not 

equal to 
1

f(x)
 ! 

Finding inverse functions is not particularly difficult.  First write the function in x,y notation, so 

write f(x) = x + 2 as y = x + 2.  Then we just switch x and y around:  y = x + 2 changes into  

x = y + 2.  In this way the input becomes the output.  After you do that however you should 
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rearrange the function so that it again says y = …; in this case y = x – 2.  The only potentially 

difficult part here is solving for y which takes good algebra skills. 

When you take a function and switch x and y around, you end up with a new relation between x 

and y, but this relation is not necessarily a function.  The original function may have two 

different x values that result in the same output value.  For example, look at f(x) = x2.  We can 

write this as y = x2, so the inverse is x = y2.  Taking the square root on both sides we get ±√x = y, 

or y = ±√x  (there is always both a positive and a negative square root).  Here negative values 

for x are not permitted, but that is not a problem since the original y values were all positive to 

start with.  The range, or collection of output values for y, becomes the domain, or collection of 

input values for x, of the inverse function. 

The image below shows the original function in red, and the inverse in blue.   Notice that the 

inverse is the original graph mirrored in the line y = x.  The inverse graph is not a function 

because it fails the vertical line test.  A vertical line drawn on the graph intersects the function 

more than once.  Every valid input for x except 0 results in two different values for y. 
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Mathematicians are a little obsessive compulsive about that sort of thing, so they like to have 

that fixed.  The domain of a function is the collection of valid input values for the function, and  

we can simply change the domain.  In this case we will restrict the domain of f(x) = x2 to values 

greater than or equal to zero. 

 

 

There, that takes care of things.  The domain of the original function consists of the input values 

for x.   The range of the original function consists of the output values for y.  When we switch x 

and y around, the domain becomes the range and vice versa.   

Example 

Find the inverse of the function y = 
1

(x+1)2
.  Determine the domain and range of both the 

function and the inverse. 
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We find the inverse by simply switching x and y around:   x = 
1

(y+1)2
.  Take the square root on 

both sides, remembering that there is always a negative square root:  ±√x = 
1

y+1
.  Here we can 

use a shortcut:  If 2 = 
6

3
 then 3 = 

6

2
, so therefore y + 1 = 

1

±√x
 .  Now we see that y = ±

1

√x
 – 1. 

The domain of the original function is all real numbers except for x= -1.  The range consists of 

positive numbers due to the square on the bottom.  When x is very close to -1 the number on 

the bottom is very small.  That results in a really large output.  When x is a large positive or 

negative number, the output is nearly 0, but it never actually gets there.  The range is the 

interval (0, ∞). 

The inverse is not a function.  The input x must be greater than 0 to avoid having a negative 

number under the square root sign, or a division by 0.  The domain is the interval (0, ∞).  The 

range is all numbers except for -1.  This is caused by the fact that 
1

√x
 can never quite reach 0, no 

matter how large a value for x we select.  Notice that the domain of the inverse relation is the 

range of the original function, and vice versa. 

 

 

Composing Functions 

 

Thankfully, composing functions is much easier than composing music.  For most functions, we 

insert a value of x, and out comes a value for f(x).  The idea of composition is that we can insert 

the output of one function as the input of another.  This usually involves a function f(x), and a 

second function g(x).   

f ◦ g means “f composed with g”.  The function f will now take the output of the function g.  The 

notation f(g(x)) shows what is happening.  For example, if f(x) = √x, and g(x) = x + 2, then  

f ◦ g would be f(x+2), which is √x + 2.  The new function that results from the composition is 

usually called h(x), so we can say that h(x) = √x + 2 in this case.   

To show this in a more practical way, let’s look at a puddle.  This particular puddle is created by 

a leaking pipe, and it is perfectly circular.  The size of the puddle is increasing, and the length of 

the radius at time t is given by the function r(t) = 5t, where r is in millimeters, and t is in 

minutes.  From this we can create a function that shows how the area of the puddle is related 

to the time t.  A = πr2, which can be written as a function:  A(r) = πr2.  We can compose this area 

function with the radius function, by using the output of r as the input for A:  A(5t) = π(5t)2.  
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That simplifies to A(5t) = 25πt2.  This gives us a new function, which we will call P(t), because it 

tells us what the area of the puddle is at time t:  P(t) = 25πt2.  

If two functions f and g are inverses of each other, then f(g(x)) = x and g(f(x)) is also x.  That is 

what inverse functions do.  One function changes x into something, and then the inverse 

function reverses that change. 

Normally we have to be careful about the domain of a function, so that we do not put 

something into the function that wouldn’t make sense.  For f(x) = 
1

x
  we know not to put 0 for x.  

However, if we are creating a new function h(x) that is f(x) composed with g(x) = x – 2, we must 

make sure that g(x) is not zero, so that 0 will not be the input for f(x).  In this case we will 

exclude x = 2 from the domain, so that we can use the output of g(x) in f(x) without creating a 

problem.   

Sometimes both functions have restrictions.  For example, f(x) = √4 − x, and g(x) = √x.  We will 

be doing f ◦ g, which gives us the new function h(x) = √4 − √x.  We start by looking at g(x).  The 

restriction on x here is that x ≥ 0, so that there will not be a negative number under the square 

root sign.  f(x) on the other hand can take any number that is less than or equal to 4.  A negative 

number would be fine, but 5 would not be a suitable input.  Therefore we have to put 

additional restrictions on x.  If we want √x to be less than or equal to 4, x must be less than or 

equal to 16.  In addition we still have the original restriction that x cannot be negative.  The 

domain of the new function will be the interval [0, 16]. 

When you are dealing with a function that is the result of a composition, it is sometimes 

tempting to just look at the function itself to determine the domain.  This is not suitable.  For 

example, take the function h(x) = x - 1, which was created by composing f(x) = x 2 with  

g(x) = √x − 1.  We might think that there would be no restrictions on the domain of h(x) by just 

looking at it.  However, no values of x smaller than 1 can be put into the function g(x).  This also 

restricts the domain of h(x) to values larger than or equal to 1.  To see this more clearly, look at 

h(x) before it was simplified:  h(x) = (√x − 1)2. 

______________________________________________________________________________ 

Just as we can compose functions, we can also decompose them.  If we have a function  

h(x) = (x + 2)2, we can look at it as the composition of two separate functions:  f(x) = x2 and  

g(x) = x + 2.  h(x) is f ◦ g. or f(g(x)).  The ability to view a single function as consisting of a 

composition of two (or more) separate functions can come in handy at times, as we will see 

when we try to determine the range of a fairly complex function. 
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Absolute Value Equations 

 

|x| = 5  means  x = 5  or  -x = 5 

Watch out for extraneous solutions! 

Use y = abs(x) to graph absolute value functions. 

Modifying the graph of y = |x|:   

y = |cx|   changes the slope of the lines     

y = -|x|   flips graph upside down 

y = |x| + b   moves graph up or down by b units 

y = |x + a|  moves graph left by a units if a is positive, and right by a units if a is negative. 

Absolute value functions can be written as piecewise functions.  Use the two different 

possibilities created by the absolute value sign as the conditions that specify which function 

rule to use. 

 

 

First, you should make sure that you feel comfortable solving basic equations that don’t involve 

absolute value.  If you need some review, see “Balancing Equations” in the Pre-Algebra / 

Algebra 1 e-book.  Sample questions of increasing difficulty are provided here so you can test 

your skills.  Solutions are located at the bottom of this page.1 

1.  x + b − 20 = 13 + b , solve for x 

2.  4 =
3

5
x − 2  

3.  1.2x = 3x −  6  

4.  Solve by cross-multiplying:  
4

x
 = 

7

12
 

5.  8 + bx = 12 + 2x, solve for x 

 

1 Solutions:  1.  x = 33    2.  x = 10    3.  x = 
30

9
    4.  x = 

48

7
    5.  x = 

4

b−2
    6.  x = 0 or x = 

1

4
 

 

http://fcserver.no-ip.org/math/?page=ebooks
http://fcserver.no-ip.org/math/?page=ebooks
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6.  x = 4x2, find both values of x 

 

The absolute value sign changes a negative number into a positive quantity.  If the number 

inside the sign is positive or zero, it remains unchanged. 

The absolute value sign is sometimes found in equations, where it creates two distinct 

possibilities. 

 

Example 

First, let's solve a really simple equation: |x| = 5. 

 

The absolute value sign only actually does something when x is negative.  If x is positive or zero 

we can just write the equation as x = 5.  On the other hand, if x is a negative number it is 

changed into a positive number.  That is, x becomes the opposite, or -x.  In this case the 

equation reads:  -x = 5.  Now we multiply both sides by -1 to get x = -5.  The two possibilities 

are:  x = 5 or x = -5.  That’s easy since we could have guessed it in the first place.  This is also the 

basis for a commonly used shortcut.   People often solve simple equations of the type |……..| = 

5 by saying that …….. = 5 or …….. = -5.  For example, |3x + 2| = 8 could be solved by saying:   

3x + 2 = 8 or 3x + 2 = -8 which solves to x = 2 or x = - 3 
1

3
.   

Caution:  an equation like |4x| = -20 will have no solution.  The part with the absolute value 

sign can never be negative! 

 

If the equation is more complicated, the usual strategy is to isolate the absolute value 

expression and deal with it last, as shown in the next example.  

 

Example 

Solve:  4|6x – 7| – 8 = 12  

The absolute value sign is not mentioned in the order of operations phrase Please Excuse My 

Dear Aunt Sally, but that doesn’t mean that you can just reach inside of it.  Sometimes students 

will try to solve this kind of problem by combining like terms, like adding the -7 and -8 together 

first, or by multiplying out 4(6x – 7).  Don’t do that!  Things inside an absolute value sign require 

special handling.  Isolate the part with the absolute value sign: 

4|6x – 7| = 20 
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|6x – 7| = 5 

6x – 7 = 5    or     6x – 7 = -5 

6x = 12      6x = 2 

x = 2      x = 
2

6
 = 

1

3
 

Check your answers by substituting them back into the original equation! 

These steps work well as long as you have a simple equation with just one absolute value 

expression.  However, as soon as you try solving equations with more than one absolute value 

sign, or inequalities containing the absolute value sign, things can get confusing.  For this reason 

you may want to look beyond the steps to see what the absolute value sign is actually doing to 

the expression inside of it.  That takes a bit longer, but it really helps you to understand this 

topic better. 

 

 

Example 

Consider the equation |x + 1| = 5. 

 

The absolute value sign always creates two possibilities.  The first possibility is that x + 1 was 

positive or zero, so the absolute value sign did nothing to it.  It was unchanged, so we could just 

remove the absolute value bars.  The second possibility is that the expression was negative and 

the absolute value sign made it positive.  When the expression x + 1 is changed by the absolute 

value sign, it turns into the opposite:  - (x + 1)  

 

For x + 1 ≥0  For x + 1 < 0 

x + 1 = 5         - (x + 1) = 5 

x = 4                 x + 1 = -5    [multiplying both sides by -1] 

                                         x = -6 

 

The answers are:  x = 4 or x = -6 

 

 

Example 

We can still use the same strategy if we have an equation like this:  |x – 7| + 3 = 5.   
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There is no need to isolate the absolute value part now, because we are dealing with it directly: 

For x – 7 ≥ 0  For x – 7 < 0 

x – 7 + 3 = 5   - (x – 7) + 3 = 5 

x – 4 = 5   - x + 7 + 3 = 5 

                                        - x + 10 = 5 

   - x = -5 

x = 9   or    x = 5 

Notice that these solutions match the conditions that we set for them.  If x – 7 ≥ 0 then we can 

add 7 to both sides to get x ≥ 7.  The solution x = 9 meets the condition x ≥ 7.  In the same way, 

if x – 7 < 0 then x < 7, and the solution x = 5 is reasonable.  Both solutions make the equation 

|x – 7| + 3 = 5 true. 

 

To practice solving absolute value equations, you should create your own.  Pick a value for x, 

make the problem, and then pretend you don’t know what x is.  If you don’t get the original 

value for x when you solve the problem, troubleshoot carefully.  Create a simpler problem if 

things don’t work out.  That may seem like a lot of work, but it’s worth it. 

 

If the unknown value x is present more than once in an equation containing absolute value 

signs, there could be extraneous solutions.  Extraneous solutions are the results of your correct 

calculations that nevertheless do not fit back into the original equation.  These extraneous 

solutions are caused by sign changes produced by the absolute value sign; they do not appear if 

the absolute value sign is removed from the equation before you start solving it.   

Example 

Solve |x + 6| = 2x + 15. 

If the expression “x + 6” is positive or zero, the absolute value sign does nothing, so we try 

removing it.  For x + 6 ≥ 0: 

x + 6 = 2x + 15 

6 = x + 15 

-9 = x 

Already we know that this will not work, because if x = -9 then the expression x + 6 is not 

positive.  x + 6 ≥ 0 means x ≥ -6, and -9 doesn’t fit that.  Checking the whole equation, we get  
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|-9 + 6| = 2(-9) + 15 

|-3| = -18 + 15 

3 = -3. 

x = -9 is an extraneous solution. 

If the expression x + 6 is negative, the absolute value sign changed it to its opposite, - (x + 6): 

-(x + 6) = 2x + 15 

-x – 6 = 2x + 15 

-6 = 3x + 15 

-21 = 3x 

x = -7  

This solution makes the expression x + 6 negative as we had assumed (if x + 6 < 0 then x < -6).  

Inserting x = -7 into the original equation gives 

|-7 + 6| = 2(-7) + 15 

|-1| = -14 + 15 

1 = 1. 

x = -7 is the correct solution.   

 

Example 

Let’s look at an equation that contains not one but two absolute value signs: 

|x – 4| = |2x – 2| – 2 

This actually creates four distinct possibilities!  We’ll look at each one in turn. 

1.  Both expressions inside the absolute value signs were positive or zero so they did not 

change.        

x – 4 = 2x – 2 – 2 

x – 4 = 2x – 4  

x = 2x   Subtract 2x from each side: 

-x = 0 

x = 0.   We can see that this solution will not work.  If x – 4 actually was a positive 

number or zero then x could never be zero; it has to be at least 4.  This is an extraneous 

solution.  If you substitute it into the original equation you can see that it won’t work. 
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2. The first expression, x – 4, was positive or zero while the second expression, 2x – 2, was 

negative.  The first expression stayed the same, but 2x – 2 was changed by the absolute 

value sign: 

x – 4 = - (2x – 2) – 2 

x – 4 = -2x + 2 – 2 

x – 4 = -2x 

x = -2x + 4 

3x = 4 

x = 4/3.  Again we get an extraneous solution because this value is less than 4. 

 

3.  The first expression was negative and the second is positive or zero: 

- (x - 4) = 2x – 2 – 2 

- x + 4 = 2x – 4 

- x = 2x – 8 

0 = 3x – 8 

-3x = -8 

x = 8/3.  This value meets both requirements, making x – 4 negative and 2x – 2 positive.  

It works as a solution when you substitute it back into the original equation. 

 

4. Both expressions were negative: 

-(x – 4) = -(2x – 2) – 2 

-x + 4 = -2x + 2 – 2 

-x + 4 = -2x 

- x = -2x – 4 

0 = -x – 4  

x = -4.  This value makes both x – 4 and 2x - 2 negative.  It is a valid solution and it makes 

the original equation true. 

Note that if the problem had contained only the absolute value expressions and nothing else, 

the solution would have been simpler.  If we were solving |x – 4| = |2x – 2|, then we could see 

that - (x – 4) = - (2x – 2) is the same as (x – 4) = (2x – 2), and - (x – 4) = (2x – 2) is the same as  

(x – 4) = - (2x – 2).  The only thing that matters here is if the expressions had the same sign 

before the absolute value operation, or if they had different signs.  There are only two 

possibilities. 
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Absolute Value Functions and Piecewise Functions 

Of course, where there is an equation there can be a function.  Recall that functions are 

relations that have a unique output for every input.  First draw the straight line y = x.  Then 

graph y = |x|.  This function takes the part of the line y = x that is to the left of the y-axis and 

makes it positive.  The result is a V-shaped graph.  The point of the V is located at (0,0).  To 

graph absolute value functions on a TI-84 graphing calculator, press the “Y=” button as usual.  

Then press the MATH button and use the right arrow key to get to the NUM menu.  The first 

choice on this menu is “abs(“, and once you select it you will be able to enter abs(x). 

To graph absolute value functions using MathGV, select File → New 2D Cartesian Graph.  Then 

select Graph → New 2D Function.  Type in abs(x).   

Turning the expressions on each side of an absolute value equation into functions and graphing 

them allows you to check your solutions.  The x values of the intersect points are the solutions 

to the equation.   For the example in the previous section, graph y = abs(x–4) and  

y = abs(2x–2) –2.   

Here are some examples of absolute value equations that have 2 solutions, one solution, and 

no solutions:   

|x + 2| = 2 

|x + 2| + 1 = -7|x + 2| + 1 

|x + 2| + 1 = - |x – 3| 

If you graph these equations as two separate functions you can see why. 

The graphs that you just created are all V-shaped, and similar to y = |x|.  To create a narrower 

“V”, we can take the line y = 2x and apply the absolute value sign:  y = |2x|.  Since the number 2 

is always positive, we could also write that as y = 2|x|.  Now try to see if you can flatten the V 

shape of y = |x| by modifying the function.  There has to be something you can use to multiply 

by that will make the slope less steep.2 

The V shapes created by these functions are easy to turn upside down.  To do so all we need is 

to give every y value a minus sign:  - y = |2x|.  Rewrite that as y = - |2x| , or y = -2|x|, to get a 

standard function.  To emphasize that it is a function, you could write it as f(x) = - |2x|.  The 

advantage of this notation is that you can show what value of x you used to get a particular 

 
2 Multiply by a number less than one, as in y = 0.5|x|  

http://www.mathgv.com/
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result.  For y = -|2x|, when x = -5, we just say that y = -10.  With function notation like f(x) = 

 - |2x|, we can say that f(-5) = -10.    

It is also not difficult to take a V-shaped function like y = |x| and shift it up or down.  All we need 

to do is add something to the function or subtract something from it.  If you graph y = |x| – 4 

you will see that the whole graph has shifted down by 4 units, and that the point of the V is 

now located at (0,-4).  Notice that y = |x| – 4 is really the same as y + 4 = |x|.  Adding 4 to the 

value of y caused the function to shift down.   

In the same way, adding something to x will cause the graph to shift left, toward the negative x-

direction.  

 

 

 Example 

Look at the graph of y = |x + 2| that you created earlier.  You might think that adding two units 

to x would cause the graph to move 2 units to the right, but it shifts to the left instead.  It may 

help you to think of it this way:  by adding 2 units to x we have made it possible for a smaller x 

to do the same job that a larger x did before.  The graph shifts toward the smaller x values. 

 

Example 

Predict what will happen if you graph y = |x − 3| – 5.    

Subtracting 3 from x will cause the original base function y = |x| to shift to the right, since a 

larger x is now needed to do the same job that x did before.  The function moves 3 units in a 

positive horizontal direction.  Subtracting 5 from the total function value (which is the same as 

adding 5 to y) will cause the function to shift down by 5 units. 

If you graph this function by hand, you can see that, like all absolute value functions, it has two 

parts:  y = x – 3 – 5   for x – 3 ≥ 0 (which means that x ≥ 3), and y = -(x – 3) – 5   for x – 3 < 0 

(which means that x < 3).  We can simplify this and then write it in piecewise notation: 

y = x – 8  for x ≥ 3 

y = - x – 2    for x < 3 

Or more properly as a piecewise function: 

  f(x) =      x – 8               for x ≥ 3 

-x – 2                 for x < 3             
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Note the use of a bracket, { , to indicate that this is a single function that follows two different 

rules depending on the input value of x.   Piecewise functions may have more than two parts, 

and are used for situations other than those involving absolute value.  For example, you may 

get a better price on some items if you buy larger quantities.             

 

Practice   

1.  Solve for x:  |x – 4| = |2x – 2|.  Use graphing software to check your work. 

2.  Write y = -5|x + 6| + 10 as a piecewise function.  Use graphing software to check your work. 

 

 



82 
 

 

Inequalities 

 

When you multiply or divide by a negative number, turn the sign around! 

 

l x l > 3  means x > 3 or -x > 3.  That works out to x > 3 or x < -3. 

l x l < 3  means -3 < x < 3 

If you need x to be within a certain range, find the midpoint of that range:   

|x − 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡| ≤ ½ the range. 

To solve a non-linear inequality it is usually best to rearrange to get a zero on one side. 

Look where the equality points are, then use test values to see where the inequality holds. 

Factoring can help you find the equality points. 

 

 

 

Graphing Inequalities 

 

Inequalities usually describe a range of numbers.  For example, x ≤ -3 means all values of x less 

than or equal to -3.  That expression describes the infinitely many solutions for this inequality 

quite well, but there are several other ways to write the same thing.  Interval notation shows 

the solutions by marking their boundaries:  (-∞, -3].  The interval extends from negative infinity 

to -3.  The square bracket at the end indicates that -3 is included in the solution.  If you wanted 

to show x < -3, which means x is smaller than -3, you would write (-∞, -3).  Because infinity is 

not a number, it can never be “included” as if the interval ended there.  Always use a curved 

parenthesis before or after the infinity symbol.  Another way to write x ≤ -3 is by using set-

builder notation.  This shows the set of all numbers x such that x is less than or equal to -3:   

{ x  l  x ≤ -3 }.  Your teacher may also want you to graph solutions like this on a number line.  

Just remember the conventions for that:  a closed circle means that the indicated number is 

included in the solution, while an open circle means that the number is not part of the solution.  

In this case you need a closed circle at -3: 
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The arrow indicates that the line continues to the left infinitely far. 

Multiple inequalities are often used to indicate a specific range of numbers.  4 < x ≤ 10  means 

all real numbers that are larger than 4 and smaller than or equal to 10.  In interval notation that 

would look like (4, 10].  “Between” generally means not including the numbers on either side, 

but when you only use words you should be specific about whether those numbers are 

included or not.  If you want to indicate all numbers between 1 and 10, not including 1 and 10, 

and you need to exclude the number 7, you can split the interval into two parts.  To join those 

parts we use “or” between the two inequalities:  1 < x < 7  or  7 < x < 10.  This says that we want 

all the x values that meet either the first condition or the second condition.  To indicate the 

same thing in interval notation, we use the ∪ symbol (union symbol) to join the two intervals:  

(1, 7) ∪ (7, 10).  Graph this as a line between 1 and 10, using open circles at 1, 7 and 10.   

The image below shows  -7 ≤ x < -4 or x > 3, which may also be written as [-7, -4) ∪ (3, ∞). 

 

Occasionally we may want to indicate numbers that are in the overlapping region of two 

inequalities.  Here we use the word “and” to indicate that we want numbers that can meet 

both conditions.  For example, -3 < x < 10 and -2 < x ≤ 0 means only those numbers that are 

greater than negative 2 and less than or equal to zero.  For interval notation we use the 

intersect symbol:  (-3, 10) ⋂ (-2, 0].  This says find the numbers in the intersection of the two 

sets.  Graph only this solution, not both inequalities! 
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Solving Inequalities 

 

Consider the inequality 4 > 3.  Now multiply both sides by -1.  You get  -4 < -3. 

Solving inequalities works like solving equations, except that the inequality sign turns around 

when you multiply or divide by a negative number.  That is, the reality represented by the sign 

turns around, but unfortunately the sign itself needs to be adjusted manually .  Don’t forget 

to do this!! 

While equations usually have no more than a few solutions, inequalities tend to have infinitely 

many.  A simple inequality like 3 – 2x ≥ 9 solves as -2x ≥ 6, so x ≤ -3.  The division by -2 meant 

that the sign had to be adjusted.   

Whether you are solving equations or inequalities, remember that dividing by zero is a big no-

no.  So, if you are dividing both sides by x, the first thing you must do is to make sure that x is 

not zero.  Consider this possibility separately, before you do the division.  If you must divide by 

x when solving an inequality rather than an equation, there is an additional factor to consider, 

since x could be either positive or negative.  So what happen to the < or > sign, does it turn 

around or not?  Well, that depends, so you have to consider each possibility separately. 

 

Example 

Solve x2 – 2x > 0. 

We can add x to both sides without creating any problems: 

x2 > 2x 

Next, we would like to divide both sides by x.  First, consider whether x could be zero.  No, that 

wouldn’t work because 02 is the same as 2∙0.  Now we can go on and do a division.  First, 

consider what happens if x is positive: 

For x > 0:  

x2

x
 > 

2x

x
 

x > 2 

So, if x is a positive number, then it must be greater than 2.  Next consider the case where x is a 

negative number: 
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For x < 0: 

x2

x
 > 

2x

x
 

x < 2 

Notice that this doesn’t just say that x is less than 2; it says that if x is negative it must be less 

than 2.  This excludes numbers like 1 and 0, but includes all negative numbers. 

Our final solution is that x < 0 or x > 2. 

The image below shows the function y = x2 – 2x.  You can see that the value of the function is 

greater than 0 everywhere except between 0 and 2: 

 

 

 

Practice solving some basic inequalities by creating your own, like maybe 5x + 3 > 10x - 22.   

Check your solutions by picking an x-value near the equal point.  For example, if your solution is 

x > 5, use x = 6 to check your work. 
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Inequalities Involving Absolute Value 

 

If you follow the method outlined in the section on absolute value, these inequalities should 

not be too difficult to manage.  

 

Example 

In our first example, the part with the absolute value is greater than something: 

l 5x + 2 l > 12 

There are two possibilities.  First, 5x + 2 was a positive quantity or zero and the absolute value 

sign did not change it.  5x + 2 ≥ 0, so 5x ≥ -2 and x ≥ - 
2

5
 

For x ≥ - 
2

5
 : 

5x + 2 > 12 

5x > 10 

x > 2.   

This solution is compatible with x being greater than or equal to - 
2

5
, so  x > 2 is valid.  Using 

interval notation we would write that as (2, ∞), which says that x is in the interval from 2 to 

infinity with the number 2 itself not included.  If we wanted to include the number 2 we would 

use the notation [2, ∞).  Notice that since “infinity” is not a number, ∞ itself is never marked as 

included in the interval. 

The other possibility is that 5x + 2 was a negative quantity that was made positive by the 

absolute value sign: 

 - (5x + 2) > 12 

    (5x + 2) < -12      

Remember to turn the inequality sign around when you divide by -1.  Notice that now you no 

longer need the parentheses: 

5x + 2 < -12 

5x < -14 

x < - 
14

5
.   
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There is no problem with the solution x < - 
14

5
 ; no values of x less than - 

14

5
 will interfere with 

the expression 5x + 2 being negative since 5x + 2 < 0 means x < - 
2

5
.  Using interval notation we 

would write (- ∞, - 
14

5
). 

Our final solution is:  x < - 
14

5
 or x > 2. 

 

Example 

Now let’s look at a situation where the part with the absolute value is less than something: 

l x l < 3.   

If you stop and think carefully, you will realize that the actual value of x must be between – 3 

and 3, so we could write -3 < x < 3.  Personally I tend to be too lazy to think carefully every time 

I do this stuff, so let me first do a problem the same way we did before. 

l 2x + 4 l < 10  

Consider the possibility that that 2x + 4 was positive or zero, so it is unchanged:   

2x + 4 < 10. 

2x < 6, so x < 3.   

You may think that this solution implies that x can be any value so long as it is less than 3.  

However, the condition for obtaining this answer is that 2x + 4 is positive or 0.  Only some 

values for x will make that true: 

2x + 4 ≥ 0 

2x ≥ - 4 

x ≥ -2 

Provided that x is bigger than or equal to -2, the solution of the inequality is x < 3.  Therefore 

the permissible values of x are between -2 and 3:  -2 ≤ x < 3. 

Now think about the possibility that 2x + 4 was negative:   

- (2x + 4) < 10 

   2x + 4 > - 10 

   2x > - 14 

     x > -7 
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Notice that I marked a minus sign in red in this solution too, because it is easy to forget it when 

you are concentrating on turning your inequality sign around.  In order for 2x + 4 to be 

negative, there is another restriction on x: 

2x + 4 < 0 

2x < -4 

x < -2 

 

Provided that x < -2, the solution to the inequality is x > -7.  This part of the solution gives us  

-7 < x < -2   

Combining our two solutions we get -7 < x < 3 

Here is the more sophisticated, and much faster, way to do the same problem: 

l 2x + 4 l < 10 really means -10 < 2x + 4 < 10.  Do not be intimidated by the two inequality signs.  

Just follow the logical steps and subtract 4 from all parts of the inequality so it is still true:  

 -14 < 2x < 6.  Next, divide by 2 all the way along:  -7 < x < 3.  Notice that this is a lot easier, so it 

does help to put some thought into it up front.  

To graph the solution for this example you need two open circles because the numbers -7 and 3 

are not included: 

  

Your graphing calculator or graphing software can help you check your answers.  Turn the 

expressions on each side of the inequality into functions and graph them.  If you graph  

y = abs(2x+4) and y = 10, you will see that the inequality is true when -7 < x < 3.  The x-values of 

the intersect points are -7 and 3. 

 

If you have an expression like 4 l 2x + 5 l – 3 < 9, first change it so that the absolute value sign is 

on one side by itself:  4 l 2x + 5 l < 12, and l 2x + 5 l < 3.  Now we know that 2x +5 must be 

between -3 and 3:  -3 < 2x + 5 < 3.  Subtract 5 from both sides:  -8 < 2x < -2, so -4 < x < -1.  

Alternatively, you can do it the long way around and get the same answer. 

Practice solving some basic linear inequalities (no exponents on x) by creating your own.  Use 

graphing software to check your solutions. 
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Tolerance Levels 

 

Sometimes you may be asked to create your own absolute value expressions.  Let’s look at a 

real-life example.  The other day I bought a pack of six 500ml soft drink bottles.  When I got 

home I noticed that one of these sealed bottles contained noticeably less liquid than the others.  

“What a rip off!” and “Is that safe to drink?” were the reactions from my family.  Manufacturers 

normally try to avoid situations like this by establishing tolerance levels for the filling process.  If 

all 500ml bottles contain between 499 and 501 milliliters consumers are unlikely to notice the 

difference, because a milliliter is a small amount of liquid that fits in a cube with sides of 1cm.  

Another way of writing this tolerance level is to say that bottles should contain 500ml ± 1ml.  

The difference can be positive or negative, so long as it is not more than 1 ml.  This is an ideal 

situation for the use of an absolute value sign: 

|𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑 𝑖𝑛 𝑏𝑜𝑡𝑡𝑙𝑒 − 500𝑚𝑙| ≤ 1ml 

Your word problem might say:  create an absolute value equation that shows that bottles of a 

certain brand of soft drink should be filled to contain between 499 and 501 ml.  To create an 

inequality like this from a word problem, find the midpoint of the acceptable range of values.   

In this case the acceptable range is from 499 to 501, so the midpoint is 500 and the range is  

501 – 499 = 2.  The difference between the actual amount and the midpoint should not be 

more than half the range: 

|𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡| ≤ ½ the range. 

 

Example 

The safe storage temperature for a vaccine is between 1 and 4 degrees Celsius.  Find an 

absolute value expression for the storage temperature. 

There is a range of 3 degrees for the safe temperature, and the midpoint of that range is 2.5 

degrees Celsius. 

|𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 2.5 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝐶| ≤ 1.5 degrees C. 

This says that we would like the storage temperature to be 2.5 degrees C, with no more than 

1.5 degrees of variation on either side. 
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Linear Inequalities 

 

Linear equations are equations like y = 4x + 2 that graph as a line.  The general form of a linear 

equation is y = mx + b, where m is the slope, and b is the y-intercept.  If you need some review 

on working with linear equations, check out “Caution!  Steep Slope Ahead” and “Linear 

Equations” in the Pre-Algebra / Algebra 1 e-book. 

Linear inequalities are very similar to linear equations.  To graph them, first graph the line of 

the corresponding linear equation.  Then consider if you want y to be bigger than that or 

smaller.  If y is larger than the value indicated by the line, shade the area above the line to show 

the solution of the inequality.  Otherwise shade the area below the line.  If the values on the 

line are not included in the inequality, as in y > 4x + 2, draw a dashed line to represent  

y = 4x + 2.  Then shade the area above the line: 

 

 

If the values on the line are to be included, use a solid line instead. 

When you solve a system of two equations, the solution is usually a single point, and it is found 

where the two lines intersect.  You can solve a system of two inequalities, like 

y > 4x + 2 

y ≤ - 
1

3
x – 1   

If there is a solution, the result will be a region of overlap: 

http://fcserver.no-ip.org/math/?page=ebooks


91 
 

 

 

 

 

Non-Linear Inequalities 

For those inequalities that involve higher powers of x, it really helps to think of the problem as a 

comparison between two functions.  Let’s look at something we can draw a simple picture for:  

x2 < 4.  We can think of that this way: 
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Here we are visualizing the function y = x2, and asking where the function value is less than 4.  

Notice that the red line represents the function y = 4.  We can see that x should be between -2 

and 2 by looking at the picture.  It is also easy to solve x2 < 4 without a picture.  If you don’t see 

the answer right away, you can first solve x2 = 4, which gives x = 2 or x = -2.  Where would x2 be 

less than 4?  Well, that should either be in the interval (-2, 2), or outside of it.  Here you can use 

test values.  Pick a value in the interval, like x = 0.  Now the inequality works.  Pick one below or 

above the interval, like -3 or 3, and you get 9 < 4 which is not true. 

This is a good general way to solve an inequality.  First look where the equality points are, and 

then use some test values to see where the inequality holds. 

Because we are doing non-linear inequalities here, it is often to our advantage to rearrange 

them to get an inequality that is less than or greater than zero.  This makes the equality points 

much easier to find.  (x – 2)(x + 3) = 0 is much easier to solve than (x – 2)(x + 3) = 4.  For the first 

equation we can say that x – 2 is zero or x + 3 is zero, or both are zero.  However, for the second 

equation we cannot say that x – 2 = 4 or x + 3 = 4! 

To illustrate, I have changed the inequality x2 < 4 to x2 – 4 < 0, and adjusted the picture: 

 

 

 

We can think of this as taking the function y = x2 – 4, and asking where the function values are 

negative.  First look at where the function is equal to zero.  x2 – 4 = 0 can be factored as  
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(x + 2)(x – 2) = 0.  This shows that the equality points are still -2 and 2.  The function touches the 

x-axis at x = 2 and x = -2, so if it is going to change from positive to negative or negative to 

positive that would happen at these points.  We can quickly see where the function is less than 

zero by using test values or a graphing calculator.  Test values require that you test in between 

the equality points and on both sides of them.  In this case you might use -3, 0 and 3. 

 

When you use a test value, you can insert it into the original inequality, into the adjusted form 

that has 0 on one side, or into the factored form.  For example, a test value of 3 can be put into  

x2 < 4 , into x2 – 4 < 0, or (x + 2)(x – 2) < 0, all with the same result.  However, if you are working 

with more complex inequalities and you don’t have a calculator handy, it may be to your 

advantage to put your test values into the factored form.  That way you do not have to actually 

calculate specific values.  Instead, you can just look for positives and negatives, like this: 

(-3 + 2)(-3 – 2) < 0 

The first part, (-3 + 2), is negative, and the second part, (-3 – 2), is also negative.  Multiplying 

two negative quantities will always produce a positive number, so we can tell right away that  

-3 doesn’t work.  A test value of 0 gives us (0 + 2)(0 - 2), which produces the negative value we 

want.  A positive value results when we test x = 3.  Report your answer as the interval (-2, 2).  

Note that the endpoints of the interval are not included, because the inequality has a < sign and 

not a ≤ sign.  Including -2 or 2 would make (x + 2)(x – 2) equal to zero. 

 

Sometimes inequalities don’t factor quite so nicely, and the equality points end up being icky 

fractions, like this:  (3x – 2)(7x – 5) > 0.  When you solve (3x – 2)(7x – 5) = 0, you get x =  
2

3
 or  

x = 
5

7
.  Now it is not so easy to get a test value that is in between 2/3 and 5/7.  Here we can 

cheat a little and work with the equality points themselves. 

First test a value that is just a little tiny bit less than 2/3.  (3x – 2) is 0 at x = 2/3, but if you use 

your imagination you can see that it would be negative if you put in something for x that is just 

a little smaller than x = 2/3.  When x is 2/3, (7x – 5) works out to   
14

3
 – 5.  We would need   

 
15

3
 – 5 to get 0, so 

14

3
 – 5 is negative, and it is still negative slightly below 2/3.  Now we have a 

negative quantity times a negative quantity, which will give a positive and make the inequality 

true.   

Next, check just a very, very tiny bit above 2/3.  (3x – 2) turns positive as soon as you get even 

the minutest fraction above 2/3.  (7x – 5) will still be negative at that point, because it requires 
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an x value of 5/7 or above in order to change its sign.  (3x – 2)(7x – 5) gives a positive times a 

negative, which is a negative value.  The inequality is false when x is between 2/3 and 5/7.   

Now we will check just a little above 5/7:  (3x – 2) is still positive, and so is (7x – 5).  Because we 

are multiplying two positive values, the inequality is true for x > 5/7.  In fact, the only place 

where the inequality is not true is between 2/3 and 5/7, an interval so small that you can’t see 

the negative part of the function on your graphing calculator unless you zoom in really close.  
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Function Graphs 

 

For y = x2 and a positive constant (c > 0):   

y = x2 + c    Shifts graph up 

y = x2 – c   Shifts graph down   

y = (x – c)2    Shifts graph right  

y = (x + c)2    Shifts graph left    

y = - x2  Reflects graph over the x-axis 

y = (-x)2 Reflects graph over the y-axis 

 

For y = f(x) and a constant c > 1: 

y = c x2  Stretches graph vertically 

y = 
1

c
 x2       Compresses graph vertically 

y = (
x

c
)
2

 Stretches graph horizontally 

y = (cx)2 Compresses graph horizontally 

  

 

Follow order of operations when you draw the graph or describe the transformations.  Do 

vertical shifts after any vertical stretches or compressions.  If x has a minus sign, first consider 

the entire graph without the minus sign, and then replace x with –x to see the reflection over 

the y-axis. 

 

 

Function Transformations 

 

[To graph functions using MathGV, select File → New 2D Cartesian Graph.  Then select Graph → 

New 2D Function.  To graph functions using a TI-84 calculator, press “Y=” and enter your 

function.  To insert an x, press the button labeled “X,T,Ø,n”.  Press “GRAPH” to see the graph.  If 

http://www.mathgv.com/
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necessary, adjust the viewing rectangle by pressing “WINDOW”.  Alternatively, use a graphing 

app for your phone or tablet.] 

 

Graph the following functions: 

y = x     y = x2 

y – 2 = x    y = x2 + 2 

y = x – 5     y = x2 – 5  

Notice that you have to rearrange some of these functions in order to graph them.  When you 

subtract 2 from y, this adds 2 to the value of the function, which moves the graph 2 units higher 

up on the y-axis.  It is more intuitive that y = x + 2 would move the graph up by 2 units.  When 

you add 5 to y, this subtracts 5 from the value of the function so that the graph y = x – 5 

appears 5 units lower down than the original y = x.  To illustrate this change, the point A below 

has been changed to A’ on the lower graph.  The y-coordinate has been decreased by 5 units. 

 

 

 

This works the same way for any function f(x).  If we create a new function y = f(x) – 5, the 

graph will move down by 5 units.  You may see this written as g(x) = f(x) – 5, which looks more 

complicated but still means the same thing. 
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Graph the following functions: 

y = x2 

y = (x – 2)2 

y = (x + 5)2 

Subtracting 2 from x shifts the graph 2 units to the right.  It now takes a larger x to do the same 

job that x did before, which causes the graph to appear further to the right.   

Adding 5 to x causes the graph to shift 5 units to the left.  A smaller x can now do the same job 

that x did before, causing the graph to appear further to the left, as shown below. 

 

 

The point A’ is 5 units further to the left than the equivalent point A on the original graph.  

Again this works for any function f(x).  If we create a new function y = f(x + 5) the graph will shift  

5 units to the left.  You can also write the new function as g(x) = f(x + 5). 

Try this out with some other functions, like y = x3, y = √x or y = |x| [To graph absolute value 

functions on a TI-84 graphing calculator, press the “Y=” button as usual.  Then press the MATH 

button and use the right arrow key to get to the NUM menu.  The first choice on this menu is 

“abs(“, and once you select it you will be able to enter abs(x).  If you are using MathGV, type in 

abs(x).]   

Next try graphing these functions: 

y = x2 – 2 

y = 3(x2 – 2) 

y = 
x2−2

3
, which is the same as y = 

1

3
 (x2 – 2)  



98 
 

 

It probably seems sensible that multiplying the function by 3 would cause it to stretch vertically 

by a factor of 3.  y = 3(x2 – 2) is 3 times larger than y = x2 – 2.  Notice however that you can also 

see this as y being divided by 3:  
y

3
 = x2 – 2.  Now it doesn’t seem quite as obvious that this 

manipulation would cause the function to get bigger in the y-direction, but of course it does.  

The image below shows that the y-coordinate of A’ is three times larger than that of point A.  

 

 

In function notation that would look like y = 3f(x), or g(x) = 3f(x). 

 

Now graph the following functions: 

y = x2 + 2    
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y = (4x)2 + 2 

y = (
x

4
)
2

 + 2 

You should notice that when x alone (rather than the whole function) is multiplied by 4, this 

causes the entire function to be 4 times narrower.  The function shrinks horizontally by a factor 

of 4.  That happens because a smaller x can now do the same job that x did before.   

When x is divided by 4 the function stretches by a factor of 4 in the x-direction, because you 

now need a bigger x to produce the same result.  In the image below, the x-coordinate of point 

A on the graph of y = x2 + 2 is 2, while the equivalent point A’ on the graph of y = (
x

4
)
2

 + 2 has 

an x-coordinate of 8, which is 4 times larger.   

 

 

 

 

To reflect a function over the x-axis (to turn it upside down), replace y with – y and adjust the 

function:  y = |x|   →    - y = |x|  →    y = - |x|.  In function notation, that would be g(x) = - f(x). 

To reflect a function over the y-axis (create a mirror image of it), replace x with – x:   

y = |x|   →     y = |−x|    or in general, g(x) = f(-x). 

Hey, wait a minute; nothing happened on that last one.  Or did it...?   
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Finding the Vertex and the Axis of Symmetry 

 

The functions y = |x|   and y = x2  have a bottom point called the vertex.  If you flip these 

functions upside down they have a top point.  The vertex is either the minimum or the 

maximum point of the function.  For these basic functions the vertex is located at (0,0), but of 

course it moves if you start manipulating the function. 

y = |x| can be shifted up by subtracting something from y, which is the same as adding 

something to the right side of the equation.  Let’s call that something k: 

y = |x| + k 

Here k could be a negative number, which means that the graph would shift down.  The whole 

graph moves either k units up or k units down.  That means the vertex moves to the point (0,k).  

Try that out with some real numbers for k to verify that the vertex does in fact end up at (0,k). 

Next, we could subtract something directly from x to move the graph to the right: 

y = |x − h| + k 

However, if we pick a negative number for h the graph will shift to the left instead.  Either way, 

the whole graph will move h units horizontally.  The vertex will end up at (h,k). 

To stretch or compress the graph, we can multiply the right side of the equation by some 

number a: 

y = a|x − h| + k 

This does not affect the position of the vertex, which stays at (h,k).  Check it out by picking 

some random (small) values for a, h and k. 

The absolute value function is symmetrical.  The line of symmetry, also called the axis of 

symmetry, is a vertical line that passes through the vertex.  For the unmodified function, y = |x|, 

the axis of symmetry passes through (0,0), and we can describe it by using the equation x = 0.  

[This says that x = 0 regardless of the value of y, so it produces a vertical line through the 

origin.]  When we manipulate the function so that the vertex moves to the point (h,k), the axis 

of symmetry also shifts, to become x = h. 

 

Example 

Find the vertex, axis of symmetry, and the x and y-intercepts for the function f(x) = 2|x + 5| – 4. 
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That f(x) part looks a bit scary, so I’ll rewrite it as y = 2|x + 5| – 4.  It looks like the basic graph of 

y = |x| has been shifted 5 units to the left, and 4 units down.  [h = -5 and k = -4].  That would put 

the vertex at (-5,-4).  

The axis of symmetry has to pass through that, so it is a vertical line at x = -5.   

The y-intercept always occurs where x is 0, so just substitute 0 for x to find y:  y = 2|0 + 5| – 4 = 

6.  The y-intercept is at (0,6).   

The x-intercept always occurs where y = 0: 

0 = 2|x + 5| – 4.  Rearrange that to find x:  4 = 2|x + 5|  so 2 = |x + 5|.  That means either x + 5 

= 2 or x + 5 = -2.  The x-intercepts are at x = -3 and x = -7, as you can also see in the picture 

below.  Notice that the x-coordinate of the vertex is exactly in the middle between -3 and -7.  

 

 

 

The function y = x2 can be modified in the exact same way as y = |x|, so we can find the vertex 

and the axis of symmetry in the same way. 

y = a(x – h)2 + k 
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The vertex ends up at the point (h,k).  The axis of symmetry is the line x = h.  To find the x-

intercept, set y equal to 0.  To find the y-intercept, let x = 0. 

 

But wait, my function looks like this:  y = x2 + 6x – 16.  Now how do I find the vertex? 

If you have already learned how to complete the square (see “Factoring”) you can rewrite this 

equation as y = x2 + 6x + … – 16.  Add 9 to both sides to make a nice square:   

y + 9 = x2 + 6x + 9 – 16.  Now write it as a square:  y + 9 = (x + 3)2 – 16, which simplifies to  

y = (x + 3)2 – 25.  The vertex will be located at (-3, -25).  However, if you have practiced 

completing the square on more complex equations you know it can be a bit of a pain.  Let’s look 

at an easier alternative. 

For the simple parabolas y = x2 and y = ax2, the only way that y can be zero is if x is zero.  That 

means that these parabolas just touch the x-axis at one point, which is also the location of the 

vertex.  If these simple parabolas are shifted left or right there will still be only one x-intercept.  

If you move the parabola so that it shifts down, there will be two x-intercepts.  They will be 

located where y is zero.  Because the parabola is symmetrical, the axis of symmetry will always 

be between those zero points.  Just remember that if you are looking for the location of the 

vertex:  if you know the x-intercepts, the x-coordinate of the vertex will be in between them.  

How do you normally find the x-intercepts of y = x2 + 6x – 16?  Well, you would set y equal to 

zero to get 0 = x2 + 6x – 16, which you can then solve by factoring or by using the quadratic 

formula.  Factoring gives (x + 8)(x – 2) = 0, so x = -8 or x = 2.  The x-coordinate of the vertex is in 

between those, so take the average:  (-8 + 2)/2 = -3.  When x = -3, y = (-3)2 + 6(-3) – 16 = -25.  

If you use the quadratic formula to solve ax2 + bx + c = 0, you find that the x-intercepts are at 

−b−√b2−4ac

2a
  and 

−b+√b2−4ac

2a
.  In between those is the x-coordinate of the vertex, 

−b

2a
.   

For the function y = x2 + 6x – 16, a = 1 and b = 6, so   
−b

2a
 = 

−6

2
 = -3.  This is the x-coordinate of the 

vertex, and we can plug that back into y = x2 + 6x – 16 to find the y-coordinate, which is -34 in 

this case.  Sometimes the x-coordinate is a fraction, which makes it a bit of a pain to find y from 

the equation.  

 

Example 

Find the vertex of the graph of f(x) = 3x2 – 4x + 5.  Write the function in vertex form. 
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I like to rewrite that in an x-y format:  y = 3x2 – 4x + 5.  The x-coordinate of the vertex is 
−b

2a
 = 

− −4

6
 = 

4

6
, or 

2

3
 You can plug that into y = 3x2 – 4x + 5 to get y = 3(

2

3
)
2

– 4 (
2

3
) + 5 = 3(

4

9
) – 

8

3
 + 5.  

You will need to simplify and create common denominators:  
4

3
 – 

8

3
 + 

15

3
 = 

11

3
. 

The vertex form looks like y = a(x – h)2 + k, and you can now plug in h and k:   

y = a(x −
2

3
)
2

 + 
11

3
 

The constant a must be 3, in order to produce the 3x2 in the function.   

There were a lot of fractions involved in finding k, the y-coordinate of the vertex, so you may 

want to take a bit of a shortcut instead.  It is easy to see from the original function that the  

y-intercept is at (0, 5).  Use that point in the vertex formula to find k: 

y = a(x – h)2 + k   

5 = 3 (0 −
2

3
)
2

 + k.   

5 = 3 (
4

9
) + k.   

5 = 
12

9
 + k 

5 =  
4

3
 + k 

k = 5 – 
4

3
  

k = 3
2

3
 , or 

11

3
 just like we found earlier. 

y = 3(x −
2

3
)
2

 + 
11

3
.   

 

Order of Operations for Function Transformations 

 

1.  Vertical Shifts 
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Look at your function equation carefully so you don’t make order of operation errors involving 

vertical shifts.   Do vertical shifts after vertical stretches or compressions.  Consider y = 4√x – 2.  

This first picture shows the graph of y = √x multiplied by 4 (blue curve), and then shifted down 

by 2 units (red curve):  

 

This second picture shows the graph of y = √x shifted down by 2 units (blue curve), and then 

stretched by a factor of 4 through multiplication (red curve): 
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The correct order is the first one; multiply by 4 first and then subtract 2.  That is what  

y = 4√x – 2 really means.  The red curve in the second picture shows y = 4(√x – 2) which is 

really y = 4√x – 8. 

For the function y = -3(x – 2)2 + 1 the multiplication by -3 is not intended to include the + 1 part, 

so account for this in your transformations.  You can flip the graph of (x – 2)2 and then stretch 

by a factor of 3, or stretch it first and then flip it.  You can even start with y = x2, flip it, stretch it, 

and then move it to the right by 2 units.  However, the shift up must be done last.  The 

multiplication by -3 applies only to (x – 2)2, not to + 1. 

 

2.  Reflection over the Y-Axis:  -x    

When you replace x in any function by –x, it causes the entire graph to flip over the y-axis, 

which is a change that may or may not be visible.  Draw the graph first, and then replace x  

with –x.  If your problem already contains this replacement by –x, put x back in, sketch the 

graph, and then replace x with –x to see the reflection.  

For example, if you are asked about the transformations in y = |−x + 4|, consider y = |x + 4| 

first.  This is the graph of y = |x| moved 4 units to the left. If you then replace x with –x, the 

graph is reflected over the y-axis.  That makes it look like the graph of y = |x| just moved 4 units 
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to the right, but you should describe this as a horizontal shift to the left, followed by a 

reflection. 

 

3.  Horizontal Stretches and Compressions 

If you are expected to do horizontal stretches and compressions you have to also be careful 

about your horizontal shifts.  Consider y = 4 (
x

5
+ 2)

1

3
 – 3.  Notice that here 2 is not added 

directly to x.  Order of operations says that 
x

5
 must be done first, so 2 is being added to 

x

5
.  The 

result of that cannot be predicted from our simple formula of “x + 2 shifts the graph two units 

to the left”.  Rewrite the equation so we can see more clearly what is happening to x: 

4 (
x

5
+ 2)

1

3
 – 3 = 4(

x+10

5
)

1

3
 – 3 = 4(

1

5
 (x + 10))

1

3
 – 3 

Now we can see that there is really a shift to the left of 10 units. 
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Polynomial Functions 

 

An nth degree polynomial has n zeros. 

For synthetic division, use the number that would be the actual root of the polynomial.  If you 

are dividing by (x – 2), use 2 in your synthetic division. 

Once you have found one zero check the polynomial that results from the division for additional 

zeros. 

Use the Rational Zeros Theorem to find potential rational zeros.  Divide the polynomial by its 

first coefficient, and then look for factors of the constant (last) term.  Do not simplify the 

fraction. 

Complex zeros and “square root” zeros, which are not rational, always come in pairs. 

A polynomial with only positive terms has no negative zeros.  The maximum number of positive 

or negative zeros of a polynomial is determined by how many sign changes occur when you 

insert a positive or negative value for x. 

To quickly find the value of a polynomial when you choose a specific number for x, divide the 

polynomial by that number using synthetic division.  The remainder will be the value you want. 

An nth degree polynomial has at most n-1 turns. 

When a function changes from positive to negative, and vice versa, it must cross the x-axis 

which results in a zero.   

The graph of a polynomial crosses the x-axis where there is a zero of odd multiplicity, and just 

touches it where there is a zero of even multiplicity.  The curve flattens where a zero has 

multiplicity 3 or higher. 
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Graphing Polynomial Functions 

 

1.  Mark the zeros. 

A polynomial of degree n has n roots, or zeros.  For example, a cubic polynomial like  

x3 + x2 – 14x – 24 is created by multiplying (x + 2)(x + 3)(x – 4).  If you want to know where the 

function f(x) = x3 + x2 – 14x – 24 crosses or touches the x-axis, you need to find for which values 

of x the function has a value of 0.  If you can factor this polynomial you can find the zeros:   

(x + 2)(x + 3)(x – 4) = 0, which means that x should be -2, -3, or 4.  If you know the zeros you can 

mark them as points on the x-axis.   

Although an nth degree polynomial always has n roots, don’t be surprised if you see a fifth 

degree polynomial function that has only one zero.  If some of the roots are complex they will 

not be shown on the graph, because that would involve using imaginary numbers.  Complex 

roots are found using the quadratic formula, and they always come in pairs due to the ± sign in 

the formula.  Those pairs always match, like (x – 3i) and (x + 3i).  It would also be impossible for 

a complex root to occur singly, because then the imaginary number wouldn’t cancel out in the 

multiplication.  Just try creating a polynomial by multiplying something like (x + 5)(x + 1)(x – 3i) 

and you’ll see what I mean.  So, a fifth degree polynomial could have 5 real roots, or 3 real roots 

and 2 complex ones, or 1 real root and 4 complex roots.  There may also be repeated 

(duplicate) roots.  The number of times a root is repeated is called its multiplicity.  Even if all 5 

roots of a fifth degree polynomial are real numbers, they may be repeated so that you see only 

one zero on the graph of the function. 

 

2.  Mark the y-intercept 

The constant term is the y-intercept, since all the terms containing x will be zero when x = 0. 

 

3.  Consider the end behavior. 

The first, or leading, term of a polynomial function dominates at large positive or negative 

values of x.  The leading term has the highest degree, and that term changes in value a lot more 

with changing values of x.  If the leading term is positive and its power is odd the value of the 

whole polynomial will be negative for large negative values of x, and positive for large positive 

values of x.  We say that the “end behavior” is “down and up”, since the left end of the graph 

points down and the right end keeps going up.  That situation reverses if the leading term is 

negative and odd:  the end behavior will be up and down.  If the leading term is positive and 

has an even power, the function’s value will be positive at both very large and very small values 
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of x; the end behavior is “up and up”.  Or, if the leading term is negative with an even power, 

both ends of the graph will point down. 

 

4.  Decide if the graph crosses the x-axis at the zeros. 

The graph crosses the x-axis where there is a zero of odd multiplicity, and just touches it where 

there is a zero of even multiplicity.  To understand why this happens, look at values of x close to 

the zero value.   If (x – 4) is one of the roots, the value of this term is zero at x = 4, which makes 

the entire polynomial have a value of zero.  Just before that, say at x = 3.9, the value of the 

term (x – 4) will be negative, making the entire polynomial negative before another term can 

interfere.  Just after that, at x = 4.1, the term will be positive and make the polynomial positive.  

This results in the graph crossing the x-axis.  Now let’s look at the case where the zero has an 

even multiplicity.  If the term (x – 4) is a root that is repeated twice, we can write it as (x – 4)2.  

(x – 4)2 is positive at any value of x close to 4, whether that value is slightly less than 4 or slightly 

greater.  The function stays positive and just touches the x-axis at the zero.   If the zero x = 4 has 

a multiplicity of 3, the factored form of the polynomial contains (x – 4)3.  This expression is 

negative when x < 4, and positive when x > 4.  The function will cross the x axis at x = 4. 

 

5. Sketch the graph 

Draw the ends of your graph with an arrow, to indicate that the function will continue up or 

down.  Guide the graph through the zeros, either crossing or touching the x-axis.  When you 

have to turn around between zeros, you are generally not expected to know how high or low 

the graph reaches before it makes the turn.  To get an idea, you can determine a y-value for a 

random x that lies between the zeros. 

The curve flattens where a zero has multiplicity 3 or higher.  If you want to get fancy you can 

show that in your graph.  Compare the graphs of y = x3 and y = x5, and also compare y = x2 with 

y = x4.  You can see how the curve flattens.  Do some calculations with sample values of x close 

to 0 to see what causes this flattening. 

 

 

Number of Turns 

Any graph can have one zero, since all it has to do is cross the x-axis.  However, in order for 

there to be another zero the graph has to turn.  That is, the direction of the curve has to change 

from going up to going down, or from going down to going up.  For each additional zero there 
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must be another turn.  If there are, for example, 5 potential zeros, then there are 4 potential 

turns.  A 5th degree polynomial may have 5 zeros, 3 zeros, or 1 zero.  There may be 4 turns, 2 

turns, or no turn.  Keep in mind that a turn in the graph does not necessarily result in a zero.  

The graph may turn, and then turn again before it reaches the x-axis.  That is two turns that are 

“wasted” in terms of creating a zero.  So, do not assume that a 5th degree polynomial with 3 

zeros has only 2 turns, since it may have either 2 or 4 turns.  The only thing you could say for 

sure is that there must be at least 2 turns if there are 3 zeros. 

 

The Intermediate Value Theorem 

That sounds complicated, but it is really a big “DUH!!”  If a function is continuous (it is a line 

with no gaps or holes), its value has to change from positive to negative, or negative to positive, 

in order to cross the x-axis.  Suppose that we check the function value at say x = 1, and find that 

it is positive.  Next we evaluate the function at x = 2 and find that it is negative.  We reason that 

the function line must have crossed the x axis somewhere in between x = 1 and x = 2, so there is 

a zero between 1 and 2.  Although we mostly use the Intermediate Value Theorem to look for 

zeros, it also applies to “intermediate” values other than zero.  For example, if a continuous 

function has a value of 5 at the start of an interval, and a value of 10 later on, then somewhere 

it must have had a value of 9, at least once, because it couldn’t get from 5 to 10 without going 

through 9. 

 

Long Division and Synthetic Division 

To find the zeros of a polynomial we can factor it, and division can help us find those factors.  If 

you divide x3 + x2 – 14x – 24 by x + 2 and the remainder is zero, then x + 2 must be a factor of  

x3 + x2 – 14x – 24.  The result of the division will be a quadratic polynomial, which can either be 

factored directly or by using the quadratic formula. 

First let’s look at plain long division with polynomials.  That works very much like regular long 

division.   

Example 

Divide x3 + x2 – 14x – 24  by  x + 2. 

              x2 – x – 12   

x + 2 │  x3 + x2 – 14x – 24 

         – (x3 + 2x2) 

                      -x2 – 14x 
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                  – (-x2 – 2x) 

                              -12x – 24 

                            -  (12x – 24)   

                                            0 

The remainder is zero, so x + 2 is a factor.  The result of the division is x2 – x – 12, which factors 

into (x + 3)(x – 4).  This tells us that x3 + x2 – 14x – 24 = (x + 2)(x + 3)(x – 4). 

Example 

Divide 2x5 + 3x4 + 25x2 – 1   by   x + 3. 

Notice that the term with x3 is missing.  That really means that its coefficient is zero, so write it 

in as 0x3 to make your division easier. 

              2x4 – 3x3 + 9x2 – 2x + 6   

x + 3 │  2x5 + 3x4 + 0x3 + 25x2 + 0x – 1 

        - (2x5 + 6x4) 

                      -3x4 + 0x3 

                  - (-3x4 – 9x3) 

                                 9x3 + 25x2 

                             -  (9x3 + 27x2)   

                                            -2x2 + 0x 

                                         - (-2x2 – 6x)   

                                                       6x - 1      

                                                  -  (6x + 18)      

                                                              -19   

The remainder is -19.  x + 3 is not a factor of 2x5 + 3x4 + 25x2 – 1. 

It is easy to make mistakes when you do long division with polynomials because you are often 

subtracting negative numbers.  Synthetic division is a shortcut that changes the subtraction into 

addition, and it is more efficient because you don’t have to write out all those x’s.   

To divide by x + 3, we use the number -3 in our synthetic division.  (To divide by  

x – 3 we would use 3.)   

Use -3 to do the synthetic division.  First write out all of the coefficients of the polynomial to be 

divided, with their proper signs.   Remember that some of the coefficients may be zero which 

causes the corresponding term to be invisible.  Caution:  you must write the zero coefficients 

into your synthetic division, which is easy to forget!  The polynomial in this example has zero 

coefficients for the terms with x3 and x.  Write it out like this: 
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-3 __│    2 3 0 25 0 -1 

            _________________________________ 

 

Now we are ready to start the division.  Take the first coefficient, 2 in this case, and put it below 

the line.  Next, multiply 2 times -3, and place the result of that below the next coefficient.   Add 

3 and -6, and place the result below the line.  This gives you the next multiplication:  -3 times -3.  

Put the result below the next coefficient in line, and add again.  Use the result for the next 

multiplication, and so on, like this: 

 

-3 __│    2 3 0 25 0 -1 

            -6           9          -27         6          -18 

_________________________________ 

               2         -3          9           -2            6         -19 

 

The very last number below the line is the remainder.  The other numbers represent the 

coefficients of the polynomial that is the result of the division.  Its degree will always be one 

less than the degree of the polynomial you started with because you have divided by a simple 

polynomial of degree 1. 

The result of the above division is: 

2x5 + 3x4 + 25x2 – 1   divided by   x + 3  =   2x4 – 3x3 + 9x2 – 2x + 6  plus  -19/(x + 3). 

Check your answer by multiplying the result of your synthetic division by x + 3, and add the 

remainder -19.  You should get the original polynomial back. 

If the remainder is zero, you know that you have found a factor of the original polynomial.  Look 

at the result of your division and factor the new polynomial if possible. 

Unfortunately synthetic division only works when you are dividing by a simple expression like  

x + 3.   If you want to divide your polynomial by something with a higher power of x, like x2 + 1, 

you must use long division.   

It is possible to use synthetic division to divide by any linear expression such as 3x – 5.  Here the 

value for x that would make 3x – 5 equal to zero is 
5

3
, so we want to use that fraction.  When we 
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do, we are effectively dividing whatever polynomial we are using by x – 
5

3
 instead of 3x – 5.   

3x – 5 is 3(x – 
5

3
 ), so x – 

5

3
 is three times smaller than what we actually should divide by.  To 

compensate for that, you must first divide your polynomial by 3, and then you can use 
5

3
 in the 

synthetic division. 

 

Finding the Value of P(a) Using Synthetic Division 

 

Polynomial functions are sometimes indicated by P(x) rather than f(x) to emphasize that the 

function is a polynomial rather than another type of function.  If you have a polynomial function 

like P(x) = x5 – 12x4 + x3 +2x2 – x + 15, it can be a bit of a pain to find the value of the function for 

a specific value of x.  You can do this quickly and easily through synthetic division.  The principle 

is this:   

If you divide 14 by 3, the answer is 4 with a remainder of 2.  That means that 14 equals 3 times 

4, plus 2.  In the same way, if you divide a polynomial by something like (x – 5), you get an 

answer and a remainder (which may be 0).  This means that your polynomial can be written as 

(x – 5) times answer + remainder.  If you then take x to be 5, the polynomial turns into 0 times 

answer + remainder.  So, P(5) = remainder. 

You may wonder how this is useful, since you could just plug x = 5 into the polynomial to find 

the value.  Well, sometimes that is not so easy.  Consider P(x) = x5 – 12x4 + x3 +2x2 – x + 15.  

Even if you have a calculator it takes time to substitute x = 5, and you could make mistakes.  If 

you don’t have a calculator things could get difficult.  With synthetic division the calculations 

are simpler: 

 

  5 │     1       -12 1             2  -1             15 

            5           -35         -170       -840      -4205 

____________________________________ 

1         -7           -34         -168       -841     -4290 

 

Your answer is x4 – 7x3 – 34x2 – 168x – 841, with a remainder of -4190.  Therefore, x5 – 12x4 + x3 

+2x2 – x + 15 = (x – 5)( x4 – 7x3 – 34x2 – 168x – 841) – 4190.   



114 
 

 

When x = 5, this reads:   

(5 – 5)( x4 – 7x3 – 34x2 – 168x – 841) – 4190 = 0 – 4190.   

So now we know that P(5) is -4190, which is the remainder you get when you divide P(x) by  

(x – 5). 

In general, when you divide P(x) by (x – a), you get some other polynomial Q(x), plus a 

remainder R.  P(x) = (x – a) ∙ Q(x) + R.   

Then set x = a so we can find P(a):  P(a) = (a – a)  ∙ Q(a) + R = 0 + R.  This means that P(a) = R.   

 

For any polynomial P, P(a) is equal to the remainder that is left when you divide P by (x – a).  If a 

happens to be a zero of the polynomial, P(a) is equal to zero, and the remainder is zero as we 

would expect. 

 

Finding the Zeros 

 

The zeros of a polynomial are those values of x that make the polynomial have a value of 0.  If 

you can factor the polynomial it is easy to see the zeros: 

x3 + x2 – 8x – 12 = 0 

(x + 2)(x + 2)(x - 3) = 0 

The zeros are -2, -2 and 3.   

If you consider complex factors, all polynomials can be factored completely.  This means that an 

nth degree polynomial has n zeros.  The easiest way to find the zeros of a polynomial is to use a 

graphing calculator or graphing software.  This shows the real zeros.  You can then divide by 

those zeros to find any complex zeros that you can’t see on the graph.  Be careful:  if the 

function just touches the x-axis at one spot there is a definitely a repeated zero present.   You 

can divide a polynomial of degree 3 or higher by this zero at least 2 times to get a remainder 

polynomial that may or may not have complex zeros.  For example, graph the function  

y = x3 + x2 – 8x – 12.  You can see the repeated zero at x = -2 on the graph.   Divide by (x + 2) 

twice [or by  (x + 2)2 once] to see that the polynomial factors as (x + 2)(x + 2)(x - 3).  To see why 

the function just touches the x-axis at the repeated zero and then heads back down, first 

substitute x = -1.9, and then x = -2.1.  The function has a negative value on both sides of x = -2 
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because (x + 2)2 is always positive.  It is the other factor, x – 3, that determines when the 

function will be positive or negative. 

Calculators and computers are nice to have, but they don’t work by magic.  Someone first has 

to think of ways to do something, and then write a program that a machine can execute.  We 

can find zeros of a polynomial manually although it can get complicated and tedious.  Here we 

will just consider some of the basic principles of how this can be done.  

Suppose a polynomial has only integer roots, for example:  a, b and c.  We can write this 

polynomial as (x – a)(x – b)(x – c).  [The value of this polynomial will be zero when x = a, or x = b 

or x = c.]  When we multiply this out, the first term will be x3 and the last term will be – abc.  

The roots of the polynomial will always be factors of the constant term (the last term of the 

polynomial, which may be zero).  By looking at all the possible factors of the constant term, we 

can guess at the roots.  If we manage to find one root, say b, we can divide the polynomial by  

(x – b) to make it easier to find the other roots. 

    

When all the roots are integers, the coefficient of the first term of the polynomial is always 1.  If 

there is another coefficient, we can divide by it when we look for the zeros.  For example: 

3x3 – 7x2 – 14x  + 24 = 0    can be changed to 3(x3 –  
7

3
 x2 –  

14

3
x +  

24

3
) = 0.  

Now we can see that at least some of the roots would be fractions.  All of the roots of the part 

in parentheses will multiply out to  
24

3
 .  It is very tempting, but do not simplify 

24

3
 to 8, because 

that would cause a loss of information and hide some of the roots!  The top part of each 

fraction must be a factor of 24 and the bottom part a factor of 3.  This is a specific example of 

the Rational Zeros Theorem.  Any of the numbers suggested as possible roots by the Rational 

Zeros Theorem can be either positive or negative.  Note that the bottom part can always be 1, 

so integer roots are always a possibility.  The actual roots of this particular polynomial are -2, 3, 

and  
4

3
 , and the complete factorization is  

3(x + 2)(x – 3)(x –  
4

3
)     which can also be written as (x + 2)(x – 3)(3x – 4)    

Please note that the Rational Zeros Theorem works for polynomials that have rational zeros 

(zeros that can be written as a ratio, which includes integers).  When you use the quadratic 

formula to find zeros, you’ll often end up with square roots that cannot be converted to a 

rational number.  Even though the graph of a polynomial shows real zeros where the function 

crosses or touches the x-axis these may not be rational zeros, and you may search for them in 

vain by using the Rational Zeros Theorem. 
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Synthetic division gives us a good way to test all the possible rational zeros.  If we think that z is 

a possible zero of the polynomial, we want to divide it by x – z to see if the remainder is 0.  Use 

z in the synthetic division.  Usually it is easiest to start with the positive integers, but if all the 

terms of your polynomial are positive it will not have a positive zero.  For example, if you look 

carefully at 5x3 + 3x2 + 8x + 17, you will see that no positive value for x will make this polynomial 

zero.  You may use z in the synthetic division even if it is a fraction, and it will give a remainder 

of zero if z is in fact a root.  However, the result of your division is not actually accurate when 

you use a fraction (see synthetic division).  That doesn’t really matter when you only need a 

root. 

Once you have been doing synthetic division for a while, you may notice that if you take a 

polynomial with a positive leading term and divide it by larger and larger positive numbers, the 

resulting numbers below the line eventually all become positive.  Once that happens, there is 

no way that these numbers can become negative or zero again as we keep dividing by a larger 

and larger positive number.  Try it out for yourself.  Because of this, once the numbers below 

the line are all positive or zero, we know that there are no zeros larger than the number we are 

dividing by.  We call this number the upper bound, and don’t waste time looking for larger 

positive zeros.  If your polynomial happens to have a negative leading term, just divide it by -1; 

it will still conveniently have the same zeros.  A somewhat similar thing happens when we 

divide our polynomial by smaller and smaller negative numbers.  The numbers below the line 

eventually become alternating positive or negative numbers (consider 0 positive or negative as 

needed).  When you see that happening you should know that there is no point in searching for 

smaller zeros.  This is the lower bound.  To take advantage of the upper and lower bounds when 

looking for zeros, start your search somewhere in the middle of the range of potential positive 

or potential negative zeros.   

When you find one zero, look at the result of your division.  This new polynomial should also 

have some zeros, so start looking for them.  The new polynomial will have fewer potential 

rational zeros, and none of them will be outside the upper and lower bounds you determined 

for the original polynomial.  This may allow you to eliminate some possibilities right away.  Also, 

this polynomial will have its own upper and lower bounds that can guide you.  If all the terms of 

the new polynomial are positive, there are no sign changes (so no positive zeros), and you need 

to start looking for negative zeros.  When you find another zero, there is again a new 

polynomial that results from the division.  Eventually you are down to a quadratic, or second-

degree polynomial, and you can factor it or use the quadratic formula to find the remaining two 

zeros.  Thanks to the quadratic formula, complex zeros and zeros with a square root that can’t 

be simplified always come in pairs. 
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Use a graphing calculator or graphing software to check that you have found the correct 

number of real zeros.  Make sure you look at the degree of your polynomial and account for all 

the zeros that it should have.  An n-th degree polynomial has n zeros, some of which may be 

complex zeros that always come in pairs. 

 

Descartes’ Rule of Signs 

 

Because all of the possible zeros of a polynomial can be either positive or negative, it 

sometimes helps to know how many potential positive and negative zeros there are.  In 

particular, if there is no possibility that there are any positive zeros at all you don’t need to 

waste your time checking for them.  Descartes’ Rule of Signs can help you with that. 

Poor Mr. Descartes did not own a graphing calculator or a computer because these items did 

not exist yet.  When he needed to graph a function he first had to invent the Cartesian 

coordinate system, and then draw the function by hand, most likely using the methods we 

already looked at.   From his perspective, the rule of signs probably seemed natural.   
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Let’s look at a polynomial function with three roots.  We will know that it has three roots 

because we are going to construct the polynomial ourselves by multiplying (x + 2)(x – 2)(x – 4).  

You can see that there will be one negative root, at x = -2, and two positive roots.  We can 

quickly multiply (x + 2)( x – 2) to get x2 – 4.  Then we multiply that by (x – 4) to get  

x3 – 4x2 – 4x + 16.  The picture above is the graph of this polynomial, and it shows the expected 

roots. 

The behavior of this function would not be a total surprise to you if you were used to 

calculating the values by hand.  Let’s do that now.  When x = 0, all terms are 0 except the last.  

The value is 16, a relatively large positive number.  When x = 1, we get 1 – 4 – 4 + 16.  The value 

is still positive, but the two negative terms - 4x2 and – 4x are starting to pull it in a negative 

direction.  By the time we get to x = 2 we have 8 – 16 – 8 + 16 and the functions is at zero.  Once 

x equals 3, the - 4x2 term is very prominent, pulling the function to its maximum negative value:   

27 – 36 – 12 + 16.  Past this point, the first term starts to play a bigger role.  Because it takes x 
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to the third power this term grows very rapidly with increasing values of x.  It soon brings the 

function to zero (64 – 64 – 16 + 16), and now there is no turning back.  x = 5 gives 125 – 100 – 

20 + 16 = 21, and by the time we are at x = 10 the first term really starts to leave the others 

behind:  1000 – 400 – 40 + 16.  What determines the zeros of this function is the change in 

direction that occurs as first the end positive term, then the negative terms, and then the lead 

positive term become prominent in setting the value of the function.  In fact, the maximum 

number of positive zeros is determined by how many “sign changes” occur in the function when 

you substitute a positive number for x.  “Sign changes” are changes in the signs of the terms as 

you read from left to right:  +x3 – 4x2 – 4x + 16.  Here the changes have been marked in red to 

show where they occur.  There are two sign changes, so the maximum number of positive zeros 

is 2. 

Now let’s look at what happens at negative values for x.  At x = -1, we get (-1)3 – 4(-1)2 – 4(-1) + 

16, which is -1 -4 + 4 + 16.  Here the function is still positive.  Once x = -2, we have -8 - 16 + 8 + 

16.  The first two terms end up negative and they quickly start pulling the function down to zero 

and beyond.  Larger negative values of x will do nothing to turn that around, and the function’s 

value remains negative.  For this function, negative numbers “see” only one sign change.  The 

function is positive at zero, and then crosses the x-axis as it gets more negative.  To see that 

there is one sign change for negative numbers, substitute –x for x in the function:  (-x)3 – 4(-x)2 

– 4(-x) + 16 = -x3 – 4x2 + 4x + 16.  The maximum number of negative zeros is determined by how 

many “sign changes” occur in the function when you substitute a negative number for x. 

Is there always a zero for every sign change in the function?  No, not really.  In the function we 

just looked at the x2 and x terms had a big advantage because they each had a coefficient of 4, 

giving them more influence at low values of x.  When that coefficient is gone they hardly make 

a dent against the large positive term 16, even though they are working together to pull the 

function down.  Here the red line shows the function x3 – x2 – x + 16, and you can see that there 

is only one zero: 
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There is still a “dip” in the function on the positive side, but the loop does not reach all the way 

down past the x-axis.  That effectively removes two of the potential zeros.  If the loop is long 

enough that it just touches the x-axis it will result in a repeated zero at that point.  A prediction 

of a single zero on the positive or negative side will always work for a cubic polynomial function 

because that doesn’t involve a loop.  The function simply crosses the x-axis once, which it has to 

do because of its predictable end behavior. 

So, we can say that we can find the maximum number of positive or negative zeros by looking 

at sign changes.  If there are actually fewer zeros, that is caused by one or more loops of the 

curve failing to reach the x-axis, resulting in 2, 4, 6, or some even number fewer zeros than 

expected.  Don’t forget either that one or more of the zeros of a polynomial could actually be 0, 

which is neither positive nor negative. 

When you do not get as many zeroes as you would expect, the missing zeroes are actually 

complex numbers generated by the negative root in the quadratic formula.  These complex 

solutions always come in pairs because there is both a positive and a negative complex root for 

a negative number.    
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Rational Expressions and Functions 

 

Rational expressions can be simplified by finding the least common denominator of all the 

fractions. 

The value of x that would make a factor of the denominator zero must be excluded from the 

domain of a rational function.  There is a vertical asymptote here, unless the same factor is also 

present in the numerator in which case there is an infinitely tiny “hole” in the graph. 

For rational equations, multiply both sides by the least common denominator to get rid of the 

fractions.  Remember to make sure that your final solution does not give a zero value for the 

denominator of any of the fractions. 

A fraction is equal to zero when its denominator is equal to zero. 

Horizontal Asymptotes (limits at infinity) 

1. If the power of the leading term (leading term = term with the highest power) on the 

top is smaller than the power of the leading term on the bottom, the rational function 

will always approach 0.  The x-axis will be a horizontal asymptote. 

2. If the leading term on the top has the highest power, the function will approach positive 

or negative infinity.   

3. If the powers of the top and bottom leading terms are equal, the function approaches a 

definite number which is determined by the coefficients of the leading terms.  There will 

be a horizontal asymptote. 

If the power of the top leading term is one higher than the power of the bottom leading term, 

the function will have a slant asymptote. 

 

For rational inequalities always start by getting a zero on one side.  Next, put everything on the 

other side over a common denominator.  There are equality points where the numerator is 

zero.  There are also potential changeover points where the denominator is zero.  Use test 

values to see where the inequality holds. 

Check your work by using a graphing calculator or graphing software. 
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Rational expressions are those that can be written as a ratio of two polynomials.  In practical 

terms, this means that we’ll be dealing with a fraction that has x in the denominator, and 

usually in the numerator too. 

 

 

Adding, Subtracting, and Simplifying Rational Expressions 

 

The first thing that you are likely to learn to do with rational expressions is to simplify them.  It 

is very much easier to see what is going on when an expression is composed of a single fraction.  

For example, you may be asked to change 
x+3 

x(x−2)
  –  

x−3 

x(x+2)
 to a single fraction.  That looks like 

a lot of work, so let’s solve an easier problem:  
1

10
 + 

1

15
.  As you know from basic arithmetic, we 

need a common denominator to be able to add these fractions [the fractions must both be the 

same size].  To do that we must find a number that both 10 and 15 “go into”.  We could just 

multiply 10 and 15 to get 150 so we can be sure that it will work out, but that’s overkill in this 

case.  The number 30 is much more suitable since it is the smallest number that is divisible by 

both 10 and 15.  It is the LCD, which stands for least common denominator [or liquid crystal 

display, depending on what you are reading].  How can we find the LCD?  Well, let’s look at 

what makes up the numbers 10, 15, and 30: 

10 = 2 ∙ 5 

15 = 3 ∙ 5 

30 = 2 ∙ 3 ∙ 5 

You need to stop here and make sure you understand how the number 30 “contains” both the 

number 10 and the number 15.  Create your own numerical examples if you need to. 

Now let’s go back to 
x+3 

x(x−2)
 – 

x−3 

x(x+2)
.   

What is the smallest expression that contains x(x – 2) and x(x + 2)?  The factors we need are x,  

(x – 2), and (x + 2).  It is not necessary to use two copies of x.  The expression we want for the 

LCD is x(x – 2)(x + 2).  This is divisible by both x(x – 2) and x(x + 2).  You may think you should 

multiply out this expression right away, but it is actually to your advantage to leave the 

common denominator in its factored form.  That way you can quickly check for any factors that 

cancel out on the top and bottom at the end.  To get the first fraction to have a denominator 
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equal to the LCD, we must multiply the bottom by (x + 2), so we have to do that to the top also 

to avoid changing the fraction: 

x+3 

x(x−2)
 ∙ 

 x+2 

x+2
 = 

(x+3)(x+2) 

x(x−2)(x+2)
 

The second fraction needs to be multiplied by (x – 2) on the top and bottom: 

x−3 

x(x+2)
 ∙ 

 x−2 

x−2
 = 

(x−3)(x−2) 

x(x+2)(x−2)
 

Now the denominators are the same.  Because we are subtracting the numerators, we have to 

multiply out the expressions on the top of each fraction: 

(x+3)(x+2) 

x(x−2)(x+2)
 – 

(x−3)(x−2) 

x(x+2)(x−2)
 = 

x2+5x+6

x(x−2)(x+2)
 – 

x2−5x+6

x(x−2)(x+2)
 = 

x2+5x+6−(x2−5x+6)

x(x−2)(x+2)
 = 

10x

x(x−2)(x+2)
 

Since we left the denominator in factored form, we can easily see that x can be canceled out.  

We can divide the top and bottom by x, provided that x is not zero.  We can never divide by 

zero, but x could not have been zero to start with since it appears in the denominator of one of 

the original fractions. 

10

(x−2)(x+2)
    x ≠ 0, x ≠ 2, x ≠ -2   This is the same as  

10

x2−4
   x ≠ 0, x ≠ 2, x ≠ -2    

Notice that we have to specify that x cannot be zero in the answer because you can no longer 

see it by looking at the rational expression.  Also, x cannot be 2 or -2. 

____________________________________________________________________________ 

Sometimes you need to factor one or more of the denominators so that you can find the least 

common denominator.  For example: 

2x+8

x2+9x+20
 + 

x

(x+5)
 = 

Factor the quadratic to see that the LCD is (x + 4)(x + 5): 

2x+8

(x+5)(x+4)
 + 

x

(x+5)
 = 

2x+8

(x+4)(x+5)
 + 

x(x+4)

(x+5)(x+4)
 = 

2x+8+x2+4x

(x+5)(x+4)
 = 

x2+6x+8

(x+5)(x+4)
  

Now the top part can be factored: 

x2+6x+8

(x+5)(x+4)
 = 

(x+4)(x+2)

(x+5)(x+4)
 = 

(x+2)

(x+5)
   x ≠ -4, x ≠ -5   
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We may divide the top and bottom by (x + 4) to cancel it out, provided that (x + 4) is not zero.  

Notice that a value of -4 for x would not be allowed in the original expression anyway.  You can 

use any value for x other than -4 and -5 to check your work.  Try using x = 10 to check that  

2x+8

x2+9x+20
 + 

x

(x+5)
 = 

(x+2)

(x+5)
 

 

If your rational expression appears as a single fraction that has other fractions contained within 

it, there is a special trick you can use.  Because it is already one fraction, you now have the 

option of multiplying both the top and the bottom by the same thing.  If we pick that thing 

strategically, we can actually get rid of all of the fractions on the top and bottom in a single 

operation.  The trick is to multiply both the top and bottom of your fraction by the LCD of all 

the fractions you want to eliminate.  Take a look at an example: 

1

x
+

3

y
1

x
+1

  

Here the LCD of the little fractions is xy.  We can multiply the top and the bottom of the main 

fraction by xy to get rid of all the little ones: 

1

x
+

3

y
1

x
+1

 ∙ 
xy

xy
 = 

xy

x
+

3xy

y
xy

x
+xy

 = 
y+3x

y+xy
 = 

y+3x

y(1+x)
   

This is much faster than eliminating these little fractions individually, but we can still do so if we 

want or if we don’t remember the trick to use. 

Let’s do it the other way too.  First eliminate the fractions on the top: 

1

x
+

3

y
= 

y

xy
+

3x

xy
= 

y+3x

xy
  

Then do the bottom one, where the LCD is 1 ∙ x: 

1

x
 + 1= 

1

x
 + 

x

x
 = 

1+x

x
 

Now we have: 

y+3x

xy
1+x

x
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To divide by a fraction you multiply by its reciprocal: 

y+3x

xy
 ÷ 

1+x

x
 = 

y+3x

xy
 ∙ 

x

1+x
 = 

x(y+3x)

xy(1+x)
 = 

y+3x

y(1+x)
    

You can see that this other way takes longer, so if you have a lot of these problems to do you 

will want to remember the trick. 

 

Rational Equations 

When you have an equation, you can multiply both sides by the LCD to quickly clear all those 

annoying fractions.  Factor if necessary to find the LCD: 

5

x+2
 + 

3

x−5
 = 

13

x2−3x−10
 

5

x+2
 + 

3

x−5
 = 

13

(x+2)(x−5)
 

The LCD is (x + 2)(x – 5) so we multiply both sides by it: 

(x + 2)(x – 5) ∙ (
5

x+2
+ 

3

x−5
) = (

13

(x+2)(x−5)
) ∙ (x + 2)(x – 5) 

5(x – 5) + 3(x + 2) = 13,  x ≠ -2 and x ≠ 5 

That is a nice trick, but again, you may not remember to use it.  Let’s do it another way too: 

Multiply each fraction on both sides of the equation by whatever it takes to get that least 

common denominator.  Don’t start multiplying everything out completely, since the goal is to 

eliminate factors: 

5(x−5)

(x+2)(x−5)
 + 

3(x+2)

(x+2)(x−5)
 = 

13

(x+2)(x−5)
   

5(x−5)+3(x+2)

(x+2)(x−5)
 = 

13

(x+2)(x−5)
   

Notice that the denominators are now equal, so the numerators must be too: 

5(x – 5) + 3(x + 2) = 13.   

Now we can just multiply things out and solve: 

5x – 25 + 3x + 6 = 13 
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8x – 19 = 13 

8x = 32, so x = 4 

Just remember to check that your final solution does not give a zero value for the denominator 

of any of the fractions!  Sometimes that may mean that there is no solution to the equation at 

all. 

In general, finding a common denominator so that you only have to worry about the numerator 

works well for solving rational equations.  Alternatively, it is also possible to create one fraction 

on each side of the equals sign so that you can cross-multiply. 

 

Example 

4

x−1
  + 

14

x+2
 = 

15

x
 

4(x+2)

(x−1)(x+2)
  + 

14(x−1)

(x+2)(x−1)
 = 

15

x
 

4x+8+14x−14

(x−1)(x+2)
 = 

15

x
 

18x−6

(x−1)(x+2)
 = 

15

x
     Now cross-multiply: 

x(18x – 6) = 15(x – 1)(x + 2) 

18x2 – 6x = 15x2 + 15x – 30 

3x2 – 21 x + 30 = 0 

x2 – 7x + 10 = 0 

(x – 2)(x – 5) = 0 

x = 2 or x = 5      Both of these solutions work in the original equation. 

 

Just a word of caution:  If you need to divide both sides of an equation by an expression 

containing x, make sure that it is not zero.  For example, if you want to divide both sides of an 

equation by x + 4, immediately write x ≠ -4, before you even do the division. 
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Vertical Asymptotes 

 

The most important thing to remember about rational functions is that we must never, ever 

divide by zero.  Therefore we have to very carefully exclude any values of x that would make 

the denominator zero.  If you look at the graph of the function y = 
1

x
, you can see that this smart 

function already knows that since it very carefully avoids the value x = 0: 

 

 

 

For this function the line x = 0 is a vertical asymptote, which is a line that the function gets close 

to but never reaches.  How does this clever function magically know to avoid x = 0?  Think 

about it before you continue reading. 
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Thanks to modern technology, vertical asymptotes can seem quite mysterious.  You’re just 

getting used to the idea of rational functions when all of a sudden these strange vertical lines 

start to appear.  Early pioneers of rational functions noticed these lines and named them, but 

they were not very surprised by them.  If you calculate function values by hand you can see 

exactly what causes vertical asymptotes. 

Let’s take a closer look at the function f(x) =  
1

x
 .  We can easily see that inserting x = 0 here is a 

big no-no, because it would cause a division by 0.  This function has no output value for x = 0.  

What is more interesting is what happens on either side of 0.  We can’t use 0 for x, but we can 

use a value that is really close to 0, such as 0.001.  Inserting this for x, we get 
1

 .001
 , which is 

1000.  Dividing by such a small number causes the function to output a large positive value.  

The closer we get to 0 the larger this value gets.  
1

 .00001
 = 100,000.  Eventually it approaches 

positive infinity.  On the other side of 0 we can pick a small negative number like -.001 to insert 

for x.  Now the output value is -1000.  The closer we get to 0 the more negative the function 

value, so it goes to negative infinity.  On either side of the non-permissible value x = 0, the 

function approaches negative or positive infinity, creating a vertical asymptote. 

Is there always a vertical asymptote where there would be a zero in the denominator?  No, 

there is a reason why there may not be one.  Consider the function(x) =  
x2−1

x−1
.  If you factor the 

top part, you see that it is composed of (x - 1)(x + 1).  The function still does not exist at x = 1, 

but now there is a difference in what happens on either side of 1.  At x = 0.999 we get  

-0.001 on the bottom, but the top is (-0.001)(0.999 + 1).  The division by the small negative 

number cancels out, and the function returns a value of 1.999.  On the other side of 1, at x = 

1.001, the same thing happens.  The division by 0.001 cancels to give a function value of 2.001.  

As we get closer and closer to 1 on either side, the function value gets closer and closer to 2, 

even though it never actually gets there.  There is no asymptote; there is just a “hole” in the 

graph at the point (1,2).  The function f(x) =  
(x−1)(x+1)

x−1
 is not the same as f(x) = x + 1 because 

they have different domains, but the “hole” at (1,2) is infinitely tiny.  Textbooks often indicate 

this type of discontinuity by marking a little open circle on the graph.  If you can’t actually see 

this hole when you use a graphing calculator or software, remember that it really is infinitely 

small so it should be invisible no matter how much you zoom in.   
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Range of a Rational Function 

 

The domain restriction on a rational function affects the range.  If the function has a little hole 

in its graph, the y value at the hole must be excluded from the range.  If there is a vertical 

asymptote it may take the range to positive or negative infinity, or both. 

Example 

Find the range of  f(x) = 
x+1

x2−1
. 

Here we need to make sure that x2 – 1 is not zero, so we must exclude x = 1 and x = -1.  Another 

problem we have is that it is not immediately clear what happens to this function when x is a 

very large positive or a very large negative number.  Since there is a difference of two squares 

in this function, the easiest way to figure things out is to factor and divide:   
x+1

x2−1
 = 

x+1

(x+1)(x−1)
.  

We end up with the simplified function f(x) = 
1

x−1
  , x ≠ 1 and x ≠ -1. 

Now it is easier to see that when x is a very large positive number the output gets closer and 

closer to zero, and when x is a very large negative number the output gets closer and closer to 

zero too.  Try this out with a few actual numbers so you can see what is happening.  We end up 

with a smaller and smaller positive or negative fraction.  It is not possible for the function to 

actually reach 0, so that has to be excluded from the range.  Because the function never 

reaches 0, the x-axis is considered a horizontal asymptote of the function.  An asymptote is a 

line that a function gets close to but never reaches.   

 

The other interesting thing that happens with this function is when we approach the value  

x = 1.  Taking a value for x close to 1 on the right (positive) side, such as 1.001, we see that we 

get a large positive number: 
1

1.001−1
 = 1000 

The closer we get to 1, the larger the result:  
1

1.00001−1
 = 100,000, and so on, all the way to  

+ infinity.  Approaching 1 from the left or negative side results in a larger and larger negative 

number:  
1

0.999−1
 = -1000, and 

1

0.99999−1
 = -100,000, which eventually takes us to - infinity.  The 

line x = 1 is a vertical asymptote of this function.  Vertical asymptotes tend to appear at points 

where the function does not exist (the denominator is 0). 
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Next we have to check what happens near x = -1.  Because we used the trick of factoring and 

dividing, we can plug -1 directly into the modified function g(x) = 
1

x−1
  , x ≠ 1  even though we 

could not put it into the original, f(x) = 
1

x−1
  , x ≠ 1 and x ≠ -1.  g(-1) = 

1

−1−1
 = 

 1

−2
.   

Even though g(x) will accept the value x = -1 our original function does not.  The best it can do is 

approach the value - 
1

2
 really, really closely.  f(x) = 

x+1

x2−1
 has an infinitely small hole in it at  

(-1,-1/2) , so - 
1

2
 must be excluded from the range.   The infinitely small hole is plugged when we 

replace f(x) by the modified version g(x). 

So, while the function output goes from – infinity to + infinity, the two values that must be 

excluded from the range are - 
1

2
 and 0. 

Here is a picture of f(x) = 
x+1

x2−1
 .  Notice that the hole at (-1, -1/2) is not visible. 
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Horizontal Asymptotes (Limits at Infinity) 

In the previous section, we found that the value of the function f(x) = 
x+1

x2−1
 approaches zero for 

very large or very small values of x.  We did this by factoring x2 – 1 into (x + 1)(x – 1) and 

dividing, so we could see more easily what happens when x approaches positive or negative 

infinity.  However, you may not always be able to simplify a function in this way. 
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In general, when a function is composed of one polynomial divided by another polynomial, 

there is a handy trick we can always use to find what happens at very small or very large values 

of x.  This trick is based on the fact that 
1

x
 gets smaller and smaller as x gets larger and larger.  It 

never actually reaches zero, but we can keep getting closer and closer to 0 by taking larger and 

larger values of x.  Zero is considered the limit of the expression 
1

x
 as x goes on to infinity.  Zero 

is also the limit of 
1

x
 as x goes to negative infinity.  The word limit is sometimes defined as the 

value that a function approaches but can never reach.  Infinity is hard to imagine, so we could 

have some philosophical discussions about limits, but for practical purposes the idea is really 

useful.   

Because limits are so useful in math, people have developed a special notation for them.  The 

limit of 
1

x
 as x goes to infinity can be written in a very compact way as lim

x→∞

1

x
. 

 

Let’s see how it works. 

 

Example   

 

For f(x) = 
x+1

x2−1
 , find lim

x→∞
f(x) and lim

x→−∞
f(x). 

The notation here may look a bit intimidating, but the question is just asking what happens to 

f(x) = 
x+1

x2−1
 at very large positive or very negative values of x.  (Determine the end-behavior of 

f(x) as x approaches positive or negative infinity.)  Since we did this earlier we already know the 

answer, and we can just focus on doing this in a different way. 

To take advantage of the limit of  
1

x
 as x gets very large or very negative, divide the top and 

bottom polynomial by the highest power of x in the denominator.  Note that this means 

dividing every single term, because it is easy to forget some.  Here x2 is the highest power of x 

in the denominator, so that is what we divide by. For f(x) = 
x+1

x2−1
 that gives us f(x) =  

x

x2+
1

x2

x2

x2−
1

x2

 .  

Simplifying, we get f(x) =  

1

x
+

1

x2

1−
1

x2

.  Now, if we say that the limit of  
1

x
 as x goes to infinity is zero, it 
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makes sense that the limit of  
1

x2
 as x goes to infinity would also be zero.  This expression 

actually approaches zero faster, but it never actually gets there either (hmm…).  Anyway, we 

can make a nice approximation by replacing all of the expressions 
1

xn
 with the number 0, so that 

1

x
+

1

x2

1−
1

x2

 turns into 
0+0

1−0
, which is 0.  This tells you that as x gets larger and larger, the output of the 

function approaches 0, although it never actually gets there.  Zero is not included in the range 

of the function.  Conveniently, 
1

xn
 also goes to zero as x gets to be more and more negative, 

giving us the same result in this case for smaller and smaller values of x.  Note that if you were 

looking for the range rather than the end behavior you would still have to go back and check 

what happens near the values 1 and -1, which is a little more work if you don’t simplify the 

function first. 

Let’s look at a slightly more difficult example:   

 

Example   

Determine the end behavior of f(x) = 
x3+3x2+4x+7

x5+x4+2x2+10
.   

What happens to this function when we have very large or very small values of x?  To find out, 

divide all the terms by the largest power of x in the denominator, which is x5 in this case.  After 

simplifying, we end up with f(x) = 

1

x2+
3

x3+
4

x4+
7

x5

1+
1

x
+

2

x3+
10

x5

.  Now we have to stop and consider what 

happens to something like  
10

x
  when x gets very large (or very negative).  If you think about that 

for a while you will realize that it is just the same as for  
1

x
 ; the expression eventually gets very 

close to zero.  If we replace all of the expressions of the form 
a

xn
 with zero, we see that the 

value of this function approaches 0 as x approaches positive or negative infinity. 

Your textbook will likely have many examples for you to try.  After you have been doing these 

problems for a while, you will notice a pattern: 

1. If the power of the leading term (leading term = term with the highest power) on the 

top is smaller than the power of the leading term on the bottom, the rational expression 

will always approach 0.  The x-axis will be a horizontal asymptote of the function, unless 

there is a vertical shift. 
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2. If the leading term on the top has the highest power, the function will approach positive 

or negative infinity.   

3. If the powers of the top and bottom leading terms are equal, the rational expression 

approaches a definite number which is determined by the coefficients of the leading 

terms.  There will be a horizontal asymptote. 

All of this makes sense, because the leading terms are really the only ones that matter when x 

gets very large or very negative.  For example, you would expect 
x3

x2
 to go to infinity as x gets 

larger and larger.  
x3

2x2
 also keeps getting bigger as x gets larger.  It works the same way for 

x3+3x2+5x+12

2x2−15
.   If the power of the leading term on the bottom is larger, it will overpower the 

top and squish it to pretty well to zero eventually.  If the top and bottom powers are equal, 

they will balance out to 1, so look at the coefficient to find out how things end up. 

 

Slant Asymptotes 

 

If the power of the top leading term is one higher than the power of the bottom leading term, 

the function will have a slant asymptote. 

A slant asymptote is a line that is not horizontal or vertical.  Like other lines, it can be described 

by a linear equation.  The function approaches the line but never touches it.  What creates this 

slant asymptote?  Let’s look at an example. 

 

Example   

Describe the end behavior of f(x) = 
x2−1

x+2
. 

We expect this function to have a vertical asymptote at x = -2, but it also has a slant asymptote.  

Use long division or synthetic division to divide x2 - 1 by x + 2.  The result is x – 2, with a 

remainder of 3.  This can be written as x – 2 + 
3

x+2
 .  When x gets larger and larger, the 

remainder 
3

x+2
 gets smaller and smaller until it approaches zero.  At large values of x, the 

function can be approximated by x – 2, although it never quite gets there.  The same goes for 

very small values of x.  The red line in this picture is y = x – 2: 
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Whenever a rational function has a top leading term that is one degree higher than the bottom 

leading term, the result of the division is a linear expression and a remainder that gets close to 

zero at very small or very large values of x. 

 

Graphing Rational Functions 

 

1.  Factor any polynomials and simplify if possible   
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If a factor cancels out, you need to mark a hole in the function at the point where the factor 

would be zero.  For example, the function f(x) = 
x−3

(x+2)(x−3)
 is almost the same as g(x) = 

1

(x+2)
, 

except for the fact that f(x) doesn’t exist at x = 3. 

 

2.  Mark the vertical asymptotes 

After you have cancelled out any factors that are the same, vertical asymptotes occur where 

there is a potential zero in the denominator.  f(x) = 
1

(x+2)
, x ≠ 3 has a vertical asymptote at  

x = -2.  At the vertical asymptotes, the function goes off into negative or positive infinity.  Pick a 

test value close to the vertical asymptote to see if the function will be positive or negative 

there.  Unless the factor that causes the vertical asymptote is raised to an even power, the 

function will switch signs on the other side of the asymptote. f(x) = 
1

(x+2)
 is negative on the left 

of the asymptote at x = -3, so it will be positive on the right.  f(x) = 
1

(x+2)2
 is positive at x = -3, so 

it will also be positive to the right of the asymptote. 

 

3.  Mark the horizontal asymptote 

If the power of the leading term (leading term = term with the highest power) on the top is 

smaller than the power of the leading term on the bottom, the rational part of the function will 

always approach 0.  The x-axis will be a horizontal asymptote, unless there is something added 

or subtracted from the rational part.  f(x) = 
x−3

(x+2)(x+7)
 has a higher power of x on the bottom, 

which you can see if you multiply the factors out.  The x-axis is a horizontal asymptote.   

f(x) = 
x−3

(x+2)(x+7)
 + 4 has a horizontal asymptote at x = 4.  If the leading term on the top has the 

highest power, the function will approach positive or negative infinity and there is no horizontal 

asymptote.  If the powers of the top and bottom leading terms are equal, the function 

approaches a definite number which is determined by the coefficients of the leading terms.  

There will be a horizontal asymptote. 

 

 

4.  Mark the zeros, if any. 

 

The zeros of a rational function occur where the numerator is equal to zero.  For example,  



137 
 

 

f(x) = 
(x−4)(x+5)

(x−1)
 has a value of zero when x = 4 or when x = -5. 

 

5.  Decide if the graph crosses the x-axis at the zeros. 

The graph crosses the x-axis where there is a zero of odd multiplicity, and just touches it where 

there is a zero of even multiplicity.  To understand why this happens, look at values of x close to 

the zero value.  If (x – 4) is one of the factors in the numerator, its value zero at x = 4, which 

makes the entire function have a value of zero.  Just before that, say at x = 3.9, the value of the 

factor (x – 4) will be negative, and after that, at x = 4.1, the factor will be positive.  This changes 

the sign of the function before another term can interfere, and results in the graph crossing the 

x-axis.  Now let’s look at the case where there is an even power of a factor.  If the term (x – 4) is 

present twice, we can write it as (x – 4)2.  (x – 4)2 is positive at any value of x close to 4, whether 

that value is slightly less than 4 or slightly greater.  The function doesn’t change signs and just 

touches the x-axis at the zero.   On the other hand, (x – 4)3 is negative when x is just a little 

smaller than 4, and positive when x is just a little larger than 4.  This causes a change in sign and 

the function will cross the x-axis at x = 4. 

 

6. Sketch the graph 

Draw the ends of your graph with an arrow, to indicate that the function will continue up, 

down, or horizontally.  Guide the graph through the zeros, either crossing or touching the x-

axis.  If you have to turn around between zeros, you are generally not expected to know how 

high or low the graph reaches before it makes the turn.  To get an idea, you can determine a  

y-value for a random x that lies between the zeros. 

 

 

Rational Inequalities 

 

Rational inequalities have an unknown in the denominator, and that unknown may appear in 

the numerator also.  
x+3

5
 > 4 is not considered a rational inequality, because we can just 

multiply both sides by 5 to get x + 3 > 20.  However, 
1

x
 > 2 is not so easy to change into a regular 

inequality.  We might be tempted to multiply by x to get 1 > 2x, but there is a bit of a problem 

with that.  Try - 
1

4
 as a test value: 1 > 2 ∙  - 

1

4
 is true, but  

1

−1/4
 > 2 is not.  The fact is that x is an 
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unknown that can be either positive or negative, so if we multiply by x we should turn the 

inequality sign around if x is negative, and leave it the same if x is positive.  This would lead to 

two separate inequalities, one for a negative x and one for a positive x.   

So, can we still create a common denominator so we can just work with the top part? 

Let’s try 
x−2

x−5
 ≥ 3. 

First, I will create a common denominator: 

x−2

x−5
 ≥ 

3(x−5)

x−5
  

Now I should be able to say that x – 2 ≥ 3(x – 5).  That works out to x – 2 ≥ 3x – 15, and I can 

subtract x from both sides:  -2 ≥ 2x – 15, which means that 13 ≥ 2x and x ≤ 6.5. Any x less than 

or equal to 6.5 should work, so I can just pick the simplest one:  x = 0.  Unfortunately, when we 

substitute x = 0 into the original equation we get 
0−2

0−5
 ≥ 3.  Our solution doesn’t work once we 

include the denominator, which is negative when x = 0!  That makes sense, because dividing by 

a negative number like that flips the inequality sign.  We need a different approach. 

First, we want to get a zero on one side of the inequality.  For 
x−2

x−5
 ≥ 3 we should subtract 3 on 

both sides:  
x−2

x−5
 – 3 ≥ 0.  Next, we put everything over a common denominator so we can deal 

with the numerator and the denominator separately: 

 
x−2

x−5
 – 

3(x−5)

x−5
  ≥ 0 

x−2−(3x−15)

x−5
  ≥ 0 

x−2−3x+15

x−5
  ≥ 0 

−2x+13

x−5
  ≥ 0 

If the numerator and the denominator are both positive or both negative the inequality is true, 

and if they have opposite signs the inequality is false.  The expression can only change signs 

where the numerator is zero or where the denominator would be zero.  If the numerator is 

zero, the value of the whole expression is zero:  
0

x−5
 = 0.  To find where this happens, we set the 

numerator equal to 0:  -2x + 13 = 0, which gives a value of 6.5 for x.  This is the point where the 
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function y = 
−2x+13

x−5
 would touch the x-axis, so this is where we look for the expression to 

potentially change from positive to negative or the other way around.  Using 6 as a test value, I 

see that 
−2x+13

x−5
 is positive when x < 6.5.  When x is equal to or greater than 6.5, the expression 

is negative and the inequality is true.  However, the function y = 
−2x+13

x−5
  has another trick up 

its sleeve.  It does not exist at x = 5, which means that it has a vertical asymptote there.  

Function values may be the same on either side of an asymptote, or they may be opposite in 

sign.  Since x – 5 is not being raised to some even power, 
−2x+13

x−5
 will change signs on either 

side of the asymptote.  We already know that the function is positive on the right of the 

asymptote at x = 6, so on the left side the function is negative and the inequality is false.  The 

solution is the interval (5, 6.5].  Note that 6.5 is included, while 5 is not. 

Even though x = 5 is not in the domain of the function, it obviously has to be considered when 

we are solving the inequality.  In general, we need to find the zeros of the denominator as well 

as the zeros of the numerator.  Order these numbers from least to greatest, and check what 

happens in between them.  
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Partial Fraction Decomposition 

 

1.  You must start with a proper fraction.   

2.  The resulting decomposed fractions must also be proper fractions. 

3.  If the original expression contains a power of a prime polynomial in the denominator, 

consider only the degree of this prime polynomial when determining the degree of the 

numerator of your partial fractions, not the power to which it is raised.  A separate fraction will 

account for each power. 

 

 

 

Rational expressions can be combined into a single rational expression, but it is also possible to 

reverse the process. 

We have already seen how to combine an expression like 
5

x+2
 – 

5

x+5
 into a single rational 

expression like this: 

5(x+5)

(x+2)(x+5)
 – 

5(x+2)

(x+5)(x+2)
 = 

5(x+5)−5(x+2)

(x+2)(x+5)
 = 

5x+25−5x−10

(x+2)(x+5)
 = 

15

(x+2)(x+5)
.   

Let’s see if we can also do that the other way around. 

Starting with 
15

(x+2)(x+5)
, we would like to decompose that into 

x+2
 and 

x−5
, but how to find 

the numbers at the top?  Algebra helps us find unknows by giving them names, so let’s call our 

unknowns in this case A and B.  By convention capital letters are always used for this purpose.  

They always start at A and go down the alphabet as far as needed. 

15

(x+2)(x+5)
 = 

A

x+2
 + 

B

x+5
 

Now we apply the same process that allowed us to add the two fractions in the first place: 

15

(x+2)(x−5)
 = 

A(x+5)

(x+2)(x+5)
 + 

B(x+2)

(x+5)(x+2)
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15

(x+2)(x+5)
 = 

A(x+5)+B(x+2)

(x+2)(x+5)
 

Since the denominator is the same on both sides of the equation, the numerators must be 

equal: 

15 = A(x + 5) + B(x + 2) 

This expression has to be true for any value of x, so we can just pick a convenient number.  If  

x = -2, the part with B disappears: 

15 = A(-2 + 5) + B(0) 

15 = 3A 

A = 5 

When we select x = -5, we can easily find B: 

15 = 0 + B(-5 + 2) 

15 = -3B 

B = -5 

 

Using some rather complex-looking mathematical reasoning, it can be shown that this kind of 

decomposition is always possible, although you may end up with fractions in your numerators.  

The proof for this involves certain restrictions, which you will have to memorize as rules. 

1.  You must start with a proper fraction.   

If the degree of the numerator is not lower than the degree of the denominator, do a long 

division first. 

2.  The resulting decomposed fractions must also be proper fractions. 

Chances are that your course will make sure there will simple first degree polynomials in the 

denominator, but if not you will have to allow for the numerator to have a higher degree. 

Example 

Decompose 
3x2+2

x(x2+1)
 by using the method of partial fractions. 
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Here one of the fractions will have a degree of 2, so we will allow for the numerator to have a 

degree of 1: 

3x2+2

x(x2+1)
 = 

A

x
 + 

Bx + C

x2+1
 

3x2+2

x(x2+1)
 = 

A(x2+1)

x(x2+1)
 + 

x(Bx + C)

x(x2+1)
 

3x2+2

x(x2+1)
 = 

A(x2+1) + x(Bx + C)

x(x2+1)
  

So now we know that A(x2 + 1) + x(Bx + C) = 3x2 + 2, for any x.  When x = 0, that looks much 

simpler: 

A(0 + 1) + 0 = 0 + 2 

A = 2 

Although there is not such a convenient value for x to find B, we can use what we know about 

A: 

2(x2 + 1) + x(Bx + C) = 3x2 + 2 

2x2 + 2 + Bx2 + Cx = 3x2 + 2 

2x2 + Bx2 + Cx = 3x2 

Since the coefficient of x2 has to be 3, B must be equal to 1 so that 2x2 + 1x2 will be equal to 3x2.  

Also, there is no term with x on the right, so C must be 0.  This illustrates an important point, 

which is that it is always possible for one or more of the unknowns to be zero. 

3x2+2

x(x2+1)
 = 

2

x
 + 

x

x2+1
 

 

3.  If the original expression contains a power of a prime polynomial in the denominator, 

consider only the degree of this prime polynomial when determining the degree of the 

numerator of your partial fractions, not the power to which it is raised.  A separate fraction 

will account for each power. 

 

Example 
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Decompose 
2x

(x + 1)2
 into two partial fractions. 

x + 1 is a prime polynomial, since it cannot be factored.  The maximum degree of the numerator 

of the partial fractions is determined by the degree of x + 1, which is 1.  The numerators can just 

be numbers (degree = 0). 

Each power of (x + 1)2 must be accounted for, so we have to create two partial fractions with 

numerators (x + 1)1 and (x + 1)2  If we had (x + 1)3 instead, we would have to create three 

fractions with denominators (x + 1), (x + 1)2 and (x + 1)3.   

2x

(x + 1)2
 = 

A

x +1
 + 

B

(x + 1)2
 

2x

(x + 1)2
 = 

A(x + 1)

(x + 1)2
 + 

B

(x + 1)2
 

2x

(x + 1)2
 = 

A(x + 1) + B

(x + 1)2
  

2x = A(x + 1) + B 

When x = 0: 

0 = A + B 

A = -B  Now use this information to substitute for A (or B if you prefer): 

2x = -B(x + 1) + B 

2x = -Bx – B + B 

B = –2 

Since A = -B, A = 2 

2x

(x + 1)2
 = 

2

(x +1)
 – 

2

(x + 1)2
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Exponential Functions and Logarithms 

 

Basic exponential function:  y = bx.   

y = bx always passes through the point (0,1), horizontal asymptote at y = 0. 

Shifted exponential function:  y = cbx-h + k,  horizontal asymptote at y = k. 

When you use the number e as the base of a simple exponential function, the function 

increases at a rate equal to its value at any given point. 

Basic logarithmic function:  y = logb x 

y = logb x always passes through the point (1,0), vertical asymptote at x = 0. 

Shifted logarithmic function:  y = c logb (x – h) + k, vertical asymptote at x = h 

log (ab) = log a + log b 

log (
a

b
) = log a – log b 

log (ax) = x log a 

Change of base formula:  logax = 
logbx

logba
 

The logarithmic function is the inverse of the exponential function:  blogbx = x 

Simple interest:  I = PRt 

Total amount of money A that you have after y years if the interest is compounded n times per 

year:  A = P(1 + 
r

n
)ny 

Continuously compounded interest formula:  A = Pert 

A = C (
1

2
)

y
h  A is the amount remaining after y years for a substance with a half-life of h years if 

the original amount was C. 
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Exponential Functions 

 

When people say that something is increasing exponentially, they mean that it is getting bigger 

very fast, although they may not always use the term in a mathematically correct sense.  An 

example of a true exponential increase is the initial growth of a bacterial colony.  Each 

bacterium divides in two to reproduce, so the more bacteria there are the faster the colony 

grows:  1 bacterium → 2 bacteria → 4 bacteria → 8 bacteria → 16 bacteria ….  The function         

y = x2 increases very quickly with increasing values of x, but y = 2x increases a lot faster.  When  

x = 2, x2 is equal to 2x.  When x = 10 however, x2 is 100 while 2x = 1024.  For the function y = 2x, 

the value of the function is multiplied by 2 every time x increases by 1. 

Basic exponential functions have the form y = bx.  Here b is the “base” that is raised to whatever 

power you choose for x.  The base b cannot be a negative number because of alternating 

positive and negative values, and missing points for some fractional exponents [(-4)1/2 for 

example would be a problem since that is √−4.]  On the other hand, negative values for x are 

perfectly fine to use.  Remember that b-3 means 
1

b3
 , which is always a positive value because b 

is never negative.   

All basic (unmodified) exponential functions have graphs that are entirely above the x-axis.  

They get really, really close to the x-axis, but they can never actually touch it (the x-axis is a 

horizontal asymptote).  There is no exponent that you can put on the base b that gives you a 

value of zero; try it out for yourself.  Since b0 = 1, the graph always passes through the point 

(0,1), for any value of b.  When b > 1, the value of an exponential function increases quickly 

(exponential growth).  Values for b that are between 0 and 1 are interesting because they result 

in rapidly decreasing values (exponential decay).  We can’t use 0 or 1 as values for the base, 

because these numbers would give straight lines rather than exponential curves. 

 

Modified Exponential Functions 

 

We can modify basic exponential functions in several ways.  This is often useful when we want 

to create a function to model exponential growth that we see in experimental data.  When we 

look at such data, we usually find that they don’t have a value of 1 at the starting point.  There 

may be some initial amount or a certain number of organisms, and then there is an exponential 

increase or decay over time.  You can take the function y = bx and multiply it by some constant, 

say 10, to get y = 10bx.  Now the function values will start at 10 when x = 0:   

y = 10 ∙ b0 = 10 ∙ 1 = 10.  For the general constant c, the function y = cbx will have a value of c at  
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x = 0.  Instead of passing through the point (0,1) the graph will pass through the point (0,c).  

This multiplication does not affect the horizontal asymptote. 

Just like any other graph, the graph of y = cbx can be shifted up or down by adding or 

subtracting some constant.  To shift the graph of y = 10(3)x down by 5 units, just write  

y = 10(3)x – 5.  Before the shift, the x-axis was a horizontal asymptote of the function.  When 

you shift the graph down by 5 units, the horizontal asymptote also shifts down, to the line  

y = -5.  In general, shift the graph of y = cbx up or down by writing y = cbx + k, where k is a 

positive or a negative number.  The horizontal asymptote will then be the line y = k. 

One example of a modified exponential function is Newton’s Law of cooling.  This law lets you 

calculate the temperature of a hot object with an initial temperature Ti, at any given time t.  

How fast the object cools depends on the difference between its initial temperature and the 

temperature of its surroundings, Ts: 

T(t) = Ts + (Ti – Ts)ekt 

where k is a small negative constant that can be determined experimentally.  Notice that this is 

an exponential function that has been shifted up by an amount equal to Ts, the temperature of 

the surroundings.  If you are working with experimental data you will want to subtract Ts from 

all of the measurements so that you can determine the exponential function more easily. 

For any function of x, we can subtract something directly from x in the formula.  If we put in 

(x – 2) instead of x, that means that x now has to be 2 units bigger to do the same job that it did 

before.  The curve shifts to the right.  That is a little counterintuitive, since we are subtracting 

and we might expect that the graph would shift to the left if we don’t stop and think about it 

carefully.  If we add something to x in the formula, the graph shifts to the left.  The general 

formula looks like this:  y = cbx–h, or y = cbx–h + k if you are shifting up or down also. 

 

 

The Number e 

 

Exponential functions increase faster and faster as their y-value increases.  The rate of increase 

at a particular point depends on the value of the function at that point, just like the number of 

new rabbits there will be in a growing colony a year from now depends on how many rabbits 

there are right now.  Consider the function y = 2x.  When x = 1 the value of the function (the y 

value) is 2.  Because the function increases ever faster as it goes, we want to approximate the 

rate of increase by looking at the value of the function between x = 1 and a point very close to 
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that, say x = 1.001.  At x = 1.001, y = 21.001 = 2.00138677.  The function value has increased by 

0.00138677.  That means that y has increased by 0.00138677 units for an increase of 0.001 

units in x.  The average rate of increase is defined as the change in y divided by the change in x, 

or 0.00138677 ÷  0.001 which works out to 1.38677.  When x = 3, y = 8, and at x = 3.001 y is 

equal to 8.00554710.  Now the rate of increase is approximately (8.0055471 - 8) ÷  0.001 = 

5.54710.  So, when the value of the function is 2, the rate of increase is 1.38677, and when the 

value of the function is 8, the rate of increase is 5.54710.  The function y = 2x increases at a rate 

that is less than its value, at any given point.  If you do the same calculations for the function y = 

3x, you will find that at any given point the function is increasing faster than its value at that 

point – see table below.  There is a base, a number between 2 and 3, for which the function y = 

bx increases at a rate exactly equal to itself at any point.  This special number is the number e.  

Like π, e has an infinite number of digits.  The number e is 2.7182818228…, and it can be found 

on your TI 83 or 84 graphing calculator above the division key.  The table below uses 

spreadsheet calculations to find the rate of increase for the three functions y = 2x, y = ex, and y 

= 3x more accurately by measuring over very small intervals.  Notice that at x = 1, the value of 

the function y = ex is approximately 2.718, and it is increasing at a rate of 2.718.  When x = 2, 

the function value is 7.389, and the rate of increase is also 7.389, and so on. 

 

 

x y= 2x Rate of 

Increase 

y= ex Rate of 

Increase 

y=3x Rate of 

Increase 

1 2 1.386342 2.718282 2.718418 3 3.296018 

1.0001 2.000139 2.718554 3.00033 

2 4 2.772685 7.389056 7.389426 9 9.888054 

2.0001 4.000277 7.389795 9.000989 

3 8 5.54537 20.08554 20.08654 27 29.66416 

3.0001 8.000555 20.08755 27.00297 

4 16 11.09074 54.59815 54.60088 81 88.99248 

4.0001 16.00111 54.60361 81.0089 
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This image shows the graphs of y = 2x (blue), y = ex (green), and y = 3x (red): 

 

 

 

The number e is a “natural” base for an exponential function, providing a perfectly balanced 

rate of increase.  This amazing number can also generate a spiral that occurs naturally in many 

places in the real world.  The logarithmic spiral is generated by graphing the equation r = eθ.  

This is an equation in polar coordinates instead of Cartesian coordinates, and it uses the radius 

of the curve as it relates to the angle θ that the radius makes with the positive part of the x-

axis.  Polar coordinates greatly simplify the equations of many curves.  In the picture below, you 

can see the radius at a 45 degree angle drawn as a red line.  I actually used the modified 

equation r = e0.00349θ to generate the curve so it would produce a nice image.  If you substitute 

45 degrees for θ, you can see that the particular radius represented by the red line has a length 

of about 1.17 units.  As the angle θ increases, the radius also increases in such a way that the 

curve keeps its same shape.  Below the graph is a photograph of a Nautilus shell, which allows 
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the animal to keep the same shape as it grows.
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         Photo by Chris 73 

The number e is related to the number π and the imaginary number i by the equation eπi = -1. 

 

Compound Interest and Other Increases (and Decreases) 

 

One way of getting interest is through simple interest.  With simple interest, your interest is 

paid out to you directly and not added to your account.  If you do not add more money to your 

account (or withdraw from it), each interest payment is the same.  Calculating simple interest is 

straightforward.  First you determine the principal, which is the original amount of money that 

you deposited.  You multiply the principal P by the interest rate r, to get the interest Pr.  For 

example, if you have $100 and the interest rate is 5% per year, the interest will be 100 times 

5%, or 100 times 0.05, which comes out to $5.  If you invest your money for a longer period at a 

simple interest rate, your total interest will be I = Prt, where t is the number of years, or the 

number of other time intervals at which the interest is paid out. 

When you get compound interest on your money, that means that the interest is added to your 

account, and the next time interest is calculated you get interest on the new amount.  This 

gives you interest on your interest, so your money grows more quickly.  Regular bank accounts 

are set up this way.  To simplify things, we will first look at interest that is compounded yearly 

(annually).  The first time the interest is calculated, it is just like simple interest.  Your principal 

is multiplied by the interest rate r to get the amount of interest.  Now you have your principal P, 

and also the interest, Pr, where r is expressed as a fraction or decimal.  For example, if the 

interest rate is 5%, use 0.05 for r.  The amount in your account is P + Pr, which can also be 

written as P(1 + r), so your money has been multiplied by 1 + r.  The multiplication by 1 is what 

preserves your original amount, and the multiplication by r provides the interest.  This 

multiplication by 1 + r happens every year.  For year 2, you have P(1 + r) in your account.  Again 

your money is multiplied by 1 + r, so now you have P(1+ r)(1 + r).  After 3 years, the money in 

your account is P(1 + r)(1 + r)(1 + r).  We can write that as P(1 + r)3.  After y years, the total 

amount is P(1 + r)y. 

Most banks compound your interest monthly rather than yearly.  Unfortunately when they do 

this calculation, they don’t multiply your money by (1 + the yearly rate); you only get 1/12th of 

the annual rate at this time.  However, over the course of a year, your money is multiplied by 1 

+ r/12 twelve times, which is P times (1 + 
r

12
)12.  After y years of this monthly compounding, 

your money has been multiplied by (1 + 
r

12
)12 y times, for a total of P times (1 + 

r

12
)12y.   
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Do your own calculations to see that after 3 years of 5% simple interest on $100 you would 

have $115.00 (assuming you didn’t spend your interest payment when you received it).  With 

interest compounded yearly, an initial amount of $100 will increase to a total of $115.76.  The 

same principal invested at 5% compounded monthly for 3 years would grow to $116.15.  The 

more frequently the interest is compounded the faster your money increases, because you get 

interest on your interest more often.  If interest is compounded n times yearly, then after y 

years you have P(1 + 
r

n
)ny.  Each year your money is multiplied by (1 + 

r

n
)n.  As n gets very large 

the expression (1 + 
r

n
)n reaches a limit, because the extra bits of interest we are compounding 

on get smaller and smaller.  This is where we again meet the number e, or 2.7182818…..  As n 

gets bigger and bigger, (1 + 
r

n
)n gets closer and closer to er.  This can be shown by using larger 

and larger values of n (grab a calculator and try it out), or through calculus.  If the bank’s 

computer system was busy calculating your interest day and night, after y years you would have 

an amount very close to Pery in your account (where P is your principal and r is the interest 

rate).   

There are other problems that are very similar to compound interest problems.  These are 

cases where the increase or decrease depends on the quantity already present, such as the 

population growth of a city, or the number of people remaining in a stadium at a given time 

after a sports event.  The increase or decrease is given as a percentage.   

If the rate is stated as a percentage per unit of time, such as “an annual increase of 12%”, use 

the compound interest formula A = P(1 ± r)t.  A is the amount at time t, P is the original amount, 

and r is the rate of increase or decrease.  You would use the + sign when there is an increase, 

and the minus sign if there is a decrease.  Pay attention to whether the time t is in years, 

months, weeks or days. 

If the rate is applied continually you are expected to use the Pert formula:  A = Pert.  The 

problem usually makes it clear that this is the case. 

 

Annualized Return 

Math textbooks used to heavily emphasize the power of compound interest, but there can be 

times when interest rates are very low or even negative.  At those times people don’t want to 

put money in the bank, and look for other investments instead.  When you do that, you need to 

be able to compare profits from various investments on a yearly basis.  For example, suppose 

you buy $1000 worth of shares of a company, and decide to sell them 5 years later at $1150.  

Your profit is $150 on $1000, or 15%.  Was that a good deal compared to investing in something 
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else?  You may think that your yearly (annualized) return here was 3% per year, but it is actually 

a bit more complicated because of compounding.  Think backwards from compound interest:  

what yearly rate of interest would give you $1150 after 5 years? 

A = P(1 + r)y 

1150 = 1000(1 + r)5 

Now we can calculate r, the annualized return: 

1150

1000
 = (1 + r)5 

Take the 5th root on both sides: 

(
1150

1000
)

1

5
 = 1 + r 

r = (
1150

1000
)

1

5
 – 1 ≈ 0.0283 or about 2.83% 

That’s not quite as good as you might have thought!   

In general, the annualized return is:  r = (
𝒆𝒏𝒅 𝒗𝒂𝒍𝒖𝒆

𝒔𝒕𝒂𝒓𝒕 𝒗𝒂𝒍𝒖𝒆
)

𝟏

𝒚
 – 1 

If you are discouraged by this and decide to sell your $1000 worth of stock after only 4 months, 

at a profit of $15, or only 1.5% you can still calculate your annualized return: 

Number of years = 4 months/ 12 months or 1/3. 

r = (
𝑒𝑛𝑑 𝑣𝑎𝑙𝑢𝑒

𝑠𝑡𝑎𝑟𝑡 𝑣𝑎𝑙𝑢𝑒
)

1

𝑦
 – 1 

r = (
1015

1000
)

1

1/3
 – 1 

r = (
1015

1000
)
3

 – 1 ≈ 0.0457 or about 4.57%       Notice that this is not the same as 3 times 1.5%. 
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Exponential Equations 

Sometimes the unknown that you have to solve for in an equation for is an exponent, or part of 

an exponent.  Most of these problems can be solved by making the base equal on both sides of 

the equation: 

5x + 2 = 125 

5x + 2 = 53 

x + 2 = 3, so x = 1 

Sometimes the base needs to be adjusted on both sides: 

32x – 1 = 48 

(25)x−1 = (22)8 

25x – 5 = 216 

5x – 5 = 16 

x = 
21

5
 

A slightly more challenging problem will require you to remember that 1/3 is the same as 3-1, 

and 2/3 would be the same as (3/2)-1: 

(
2

3
)
5x+1

 = (
27

8
)
x−4

 

(
2

3
)
5x+1

 = ((
3

2
)
3
)
x−4

 

(
2

3
)
5x+1

 = ((
2

3
)
−3

)
x−4

 

(
2

3
)
5x+1

 = (
2

3
)
−3x+12

 

5x + 1 = -3x + 12 

x = 
11

8
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Logarithms 

 

Early in the 16th century, progress in astronomy was held back by the difficult calculations 

required to decipher the workings of the solar system.  Logarithms provided a much 

appreciated solution.  The usefulness of logarithms was discovered independently by John 

Napier, a Scottish baron, and Jost Bürgi, a Swiss clockmaker.  Logarithms are really just 

exponents, and we already know that we can multiply two the same numbers raised to 

different powers by just adding the exponents:  xa + xb = xa + b.  In the same way, we can divide 

quickly and easily by subtracting the exponents:  xa ÷ xb = xa – b.  Both Napier and Bürgi reasoned 

that if they could express any number as some base x raised to a power, they could multiply 

and divide easily, which was very important at a time when calculators had not yet been 

invented.  Logarithms quickly became very popular.  Henry Briggs proposed using the number 

10 as a base, and soon extensive tables were published showing numbers and their base 10 

logarithms.  These base 10 logs are now available by using the LOG key on your calculator.   

When we use 10 as a base, the log of 100 is 2, because 100 = 102.  The log of 1000 is 3, because 

103 = 3, and so on.  Numbers that are not powers of 10 have logs that are expressed as 

rounded-off decimal values.  For example, the base 10 log of 5 is .69897….  This means that 

100.69897 is approximately 5.   

Logarithmic functions are the inverse of exponential functions.  Let’s say you have the number 

4, and you put it into the exponential function y = 10x.  The result of that is 104 or 10,000. Then 

you put 10,000 into the logarithmic function y = log x.  Now you get back to 4.  That works the 

other way too:  start with 10,000 and take the log to get 4.  Put 4 into the exponential function 

y = 10x to get back to 10,000.  Basically logarithmic and exponential functions cancel each other 

out.  As a result of that, something like 10log 1000 is 1000, and 10log x is just x. 

As we saw earlier, an exponential function only outputs positive values.  You can only use 

positive numbers as an input for a logarithmic function.  Logarithms are exponents, and it does 

not make sense to ask for say, the base 10 logarithm of -100.  There is no exponent we can put 

on the number 10 that will give a value of -100.  We can use negative exponents, like 10-2, but 

this will always produce a positive value.  10-2 means 
1

102
 which is 0.01.  Logarithms of negative 

numbers or zero are not defined.   

Let’s see how we would do a simple multiplication using base 10 logarithms.  We will multiply 

12,879 x 23,457.  The log of 12,879 is approximately 4.1098821, and the log of 23,457 is about 

4.3702725.  This means that we can rewrite our problem as follows:  12,879 x 23,457 = 

104.1098821 x 104.3702725.  To multiply these two numbers we add their exponents, so we get 

104.1098821 + 4.3702725, which is 108.4801546 = 302,102,695.  The real answer for 12,879 x 23,457 is 
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302,102,703, however it would take a very long time to obtain this answer if you were 

multiplying without a calculator.  The simple addition problem 4.1098821 + 4.3702725 can be 

done quite quickly on paper, with far less risk of error.  The logarithmic values themselves used 

to be available in tables, so people could just look them up.  Carrying these tables around and 

searching for values was somewhat inconvenient, so people designed slide rules.  These devices 

featured movable rows of numbers that were spaced according to the value of their logarithms.  

Slide rules also allowed the more complex operations of multiplication and division to be 

reduced to simple addition and subtraction.  The results were usually approximate, but good 

enough for most purposes.  When Enrico Fermi created the world’s first self-sustaining nuclear 

reaction, he was monitoring it using his slide rule.  As soon as calculators became widely 

available people discarded their slide rules because they could get faster and more accurate 

results by using a calculator.   

Although logarithms are no longer used to simplify calculations, they are still important in 

mathematics, science, engineering, and computer applications.  The basic rules of using 

logarithms are not hard to learn, and easy to re-create using simple base 10 logarithm 

examples. 

103 ∙ 102 = 105.    We add the exponents, so we add the logs:   

Log (103 ∙ 102) = log (103) + log (102) = 3 + 2 = 5 

General rule: log (ab) = log a + log b 

 

105 ÷ 103 = 102.  We subtract the exponents, so we subtract the logs: 

log (105 ÷ 103) = log (105) – log (103) = 5 – 3 = 2 

General rule:  log (
a

b
) = log a – log b  

(104)2 = 108.  We multiply the exponents.  The exponent on the outside is always there, so grab 

it first: 

log (104)2 = 2 ∙ log (104) = 2 ∙ 4 = 8 

General rule:  log (ax) = x log a 

Notice that there is nothing you can do with log (a + b) or log (a – b).   

 

I have a nice calculator, but it only does logarithms in two kinds of bases.  The first, as we have 

already seen, is the common base 10 log, just labeled LOG.  The other one is the natural 

logarithm, ln.  Natural logarithms use the special number e as a base.  The number e is also the 

base for the natural exponential function y = ex.  At any given point, this special function 
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increases at a rate that is exactly equal to its value at that point.  The natural logarithm 

function, y = ln x, is the inverse of the natural exponential function.  Again these operations 

cancel each other out:  ln (ex) = x and eln x = x.  

Logarithms can have any positive number as a base, so you will often see something like log25.  

This means the base 2 log of 5, and if you want to find the value of it you should ask to what 

power 2 should be raised to create the number 5: 

2x = 5   Here x is the base 2 logarithm of 5.  Solve for x by taking the base 10 logarithm of both 

sides: 

log 2x = log 5 

x log 2 = log 5 

x = 
log 5

log 2
  

The reason I chose to take the base 10 logarithms on both sides is that those are easy to get 

using a calculator.  I could also have used the natural logarithms, in which case the answer 

would be x =  
ln 5

ln 2
.  Both answers give the same numerical value for x, about 2.3219. 

In general, if you want the base b logarithm of the number a, just call it x: 

logb a = x 

bx = a 

x log b = log a 

x = 
log a

log b
 

 

Whenever you are doing problems with exponents, always check if you can change the base.  

Watch for the numbers 4 = 22, 8 = 23, 25 = 52 and 125 = 53. 

 

Example  

Simplify:   2 ln 8 – 3 ln 4 

First put the exponents up:  ln 82 – ln 43 
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Change it to a division:  ln (
82

43) 

Change the base:  ln (
(23)2

(22)3
) = ln (

26

26) = ln 1 = 0 

 

Example 

Solve for x:  logx 2 + logx 4 = 3 

logx (2 ∙ 4) = 3 

logx 8 = 3 

8 = x3 

x = 81/3 = 2.  Although there are complex solutions for x they are not suitable here because 

these numbers cannot be used as the base of a logarithm. 

 

Example 

Solve for x:  
5x2

25x
 = 125 

This problem is just screaming for you to adjust the base: 

5x2

(52)x
 = 53 

5x2

52x
 = 53 

5x2−2x = 53 

x2 – 2x = 3 

x2 – 2x – 3 = 0 

(x + 1)(x – 3) = 0 

x = -1 or x = 3.   Both solutions work. 

 

Example 
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log2x + 4 = log232 , find x. 

To solve this problem, write both sides of the equation as a power of 2: 

2log2x+4 = 2log232 

2log2x ∙ 24 = 2log232 

x ∙ 16 = 32 

x = 2       You can easily verify that this is correct:  log22 + 4 = log232, which says that 1 + 4 = 5. 

Change of Base Formula 

 

Sometimes it is necessary to change the base of a logarithm.  For example, suppose that I need 

a numerical value for log312.  My calculator will only do base 10 logs (log) or natural logarithms 

(ln), so I have to change the base. 

First we need to get rid of the base 3 log, so we have to have an equation.  Just call the log 

something, like y, so you can raise both sides to a power of 3: 

log312 = y 

3log312  = 3y 

12 = 3y 

Then take the base 10 log on both sides: 

log 12 = log 3y 

log 12 = y log 3 

y = 
log 12

log 3
 

 

Practice:  change the base of logax to b using the method shown above. 

 

The general formula is 

logax = 
logbx

logba
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Graphing Logarithmic Functions 

 

Taking a logarithm, which is finding an exponent, is the inverse of raising to a power.  When 

two functions are inverses of each other we can graph them by reversing their x and y values, 

which reflects one graph over the line y = x to create the graph of the inverse function.  If you 

think of the line y = x as a mirror, one graph is the mirror image of the other.   

To graph y = log2 x by hand, you can make a (small) table of values for the inverse function  

y = 2x: 

m 

X Y 

-2 1/4 

-1 1/2 

0 1 

1 2 

2 4 

 

This helps you see that the base 2 log of ¼ is -2, the base 2 log of ½ is -1, and so on.  Choose 

these convenient values for x, and mark the corresponding y-values on your graph.  

To graph more complex functions like y = log3(x – 2) + 1, graph the parent function, y = log3x 

first by constructing a table for y = 3x.  Then shift your points 2 units to the right and 1 unit up. 

If you try to graph logarithmic functions electronically you may run into a problem because your 

calculator or graphing software does not graph logarithms with a base other than 10 or e.  You 

will have to adjust a function like y = log2 x yourself by turning both sides into a power of 2: 

2y = 2log2x    

2y = x 
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log(2y) = log x 

y log 2 = log x 

y = 
log x

log 2
, which you would enter as y = log(x)/log(2). 

It may seem a bit odd that 2log2x is equal to x.   The base 2 logarithmic function is the inverse of 

the exponential function with base 2.  One function “undoes” the operation of the other.  If you 

take any number x and find the base 2 log, and then put the result of that into the exponential 

function y = 2x, you get your original number x back.  Try that out with a suitable number like 8, 

which is 23.  The base 2 logarithm of 8 is 3.  Now if you raise 2 to the power (log2 8) you just get 

8, the number you started with.  That is similar to taking the positive square root of a number 

and then squaring the result:  (√16)
2
  = 16.  To get rid of the square root you use squaring.  To 

get rid of log2 you raise to a power of 2:  2log28 = 8. 

 

The graph below shows the functions y = 2x (blue curve) and y = log2 x (red curve): 
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Just as a basic exponential function always includes the point (0.1) in its graph, the graph of a 

basic logarithmic function always passes through the point (0,1).  Log21 = 0 since 20 = 1.  The log 

of 1 is always 0 for any base.  Notice that when x is smaller than 1, this logarithmic function 

returns negative values.  The base 2 logarithms of numbers less than 1 are negative, which 

means that we must raise 2 to a negative power to create such numbers.  We can find the base 

2 logarithms of very small positive numbers, but there is no logarithm of 0.  It may look like the 

graph is touching the y-axis in the picture, but it actually only gets really, really close.  The y-axis 

is a vertical asymptote. 

The next picture shows the functions y = (1/2)x  (blue curve), and y = log1/2 x  (red curve).  Notice 

that these graphs still pass through the points (0,1) and 1,0).  The x-axis is a horizontal 

asymptote for the exponential function, and the y-axis is a vertical asymptote for the 

logarithmic function. 
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Logarithmic functions can be modified and shifted in the same way as exponential functions.  

We can multiply the function by a constant, to get y = c logb x.  Because logb 1 is always 0,  

c logb x is also 0, and the graph still passes though the point (1,0).  To shift the graph up or down 

add k:  y = c logb (x) + k.  To shift right or left subtract h:  y = c logb (x-h) + k.  Note that if you shift 

the graph of a logarithmic function left or right, the vertical asymptote also shifts left or right.  If 

you shift the graph h units to the right (which turns into left if h is negative), the vertical 

asymptote will be at the line y = h instead of at the y-axis. 

 

Half-Life 

 

Half-life is a specific type of exponential decay.  The half-life function is an exponential function 

with a base of ½.  Say we have an amount C of a substance that has a half-life of one year.  The 
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amount remaining after 1 year is C ∙ (
1

2
).  If two years go by, the original amount C gets cut in 

half twice:  C∙ (
1

2
)
2

.   The remaining amount after 3 years is given by C∙ (
1

2
)
3

, and so on.  After 

y years, the amount A that remains is given by the equation A = C (
1

2
)
y

.  Slightly confusing is 

what happens if we have a much longer half-life.  First let’s try a half-life of 10 years, to make 

things easier to imagine.  It now takes 10 years before we have half of the original amount left.  

How can we take the original equation A = C (
1

2
)
y

 and make the time take 10 times as long?  

Let’s try A = C (
1

2
)

y
10

.  Now 10 years have to go by to give us ½ the original amount.  That’s all 

there is to it.  If the half-life is a large scary number like 360,000 years, you just write the 

equation as A = C(
1

2
)

y
360,000

.  If your half-life is in different units, like 5 months, you can write 

the equation like this: A = C (
1

2
)

m
5

 and your answer will be in months. 

When you are actually using this equation, the question may ask something like:  “Only 15% of 

the original amount of carbon-14 remains in a sample.  Carbon-14 has a half-life of 5730 years.  

How old is the sample?”  Notice that the original amount of C-14 is not given.  This really means 

that you can use whatever original amount you want, so long as the remaining amount is 15% 

of that.  A convenient value to use is 1 [kg, gram, pound, whatever; it really doesn’t matter]: 

0.15 = 1 ∙ (
1

2
)

y

5730
 , so we write that as 0.15 = (.5)y/5730 

Now all we have to do is solve for the only unknown y.  This can be done by taking a logarithm 

on both sides.  Either the base 10 logarithm (LOG) or the natural logarithm (LN) will work here.  

Actually, any logarithm at all would work, but your calculator only does LOG or LN. 

log 0.15 = 
𝑦

5730
 log(.5).  Rearranging gives  

log 0.15

log 0.5
 = 

y

5730
 , and your calculator should tell you 

that the sample is about 15,683 years old. 

You should make a note of the fact that any exponential decay function has a half-life 

associated with it.  For example, if y = 5 – x, that is an exponential decay function because we 

can rewrite it as y = 
1

5x
 according to the rules for exponents, which is the same as y = (

1

5
)
x

.  The 

base is smaller than 1.  Next, we can convert the base.  
1

5
 is ½ raised to some power:  (

1

2
)
x

= 
1

5
.  

To find x, take a base 10 logarithm on both sides:  x log 
1

2
 = log 

1

5
, so x = log 

1

5
 / log 0.5.  Use a 
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calculator to get x = 2.3219 (rounded off).  Now rewrite the function as y = ((
1

2
)
2.3219

)
x

, or  

y = (
1

2
)
2.3219x

.  If x is the half-life, it will be 1 ÷ 2.3219 or about 0.43. 
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Parabolas 

 

For y = ax2 + bx + c, the graph is a parabola and the x-coordinate of the vertex is - 
b

2a
 

y = ax2  Opens upwards if a > 0, and down if a < 0.  Vertex at (0, 0), focus at (0, p) 

y = a(x – h)2 + k Same, but vertex at (h, k), focus at (h, p + k) 

x = ay2  Opens to right if a > 0, and to left if a < 0.  Vertex at (0, 0), focus at (p, 0) 

x = a(y – k) + h  Same, but vertex at (h, k) and focus at (p + h, k) 

a = 
1

4p
   so  p = 

1

4a
 

You can check your work with parabolas by using a graphing program.  Use “^” for the 

exponents.   

 

 

Quadratic Equations and Parabolas 

 

When we graph the simple equation y = x2 we create a parabola.  The vertex of a parabola is its 

highest or lowest point.  In this case the vertex or lowest point of the parabola is at (0, 0).  We 

can adjust the shape of the parabola by using the equation y = ax2, where a is some arbitrary 

constant.  If a is a positive number larger than 1, the parabola looks “narrow”, and if a is a very 

small positive number the parabola flattens out.  If a is negative the parabola flips over so that 

the vertex is at the top. 

Adding a number to the equation shifts the parabola up, or down if the number is negative:   

y = ax2 + k.  This can also be written as y – k = ax2.  Just as subtracting k from y shifts the 

parabola in the positive y direction, subtracting h from x will shift the parabola in the positive x 

direction:   

y – k = a(x – h)2, or y = a(x – h)2 + k.  The vertex of this parabola is located at the point (h,k) 

All quadratic equations graph as parabolas.  To change y = ax2 + bx + c to the more useful form 

above where you can read off the position of the vertex, just complete the square (see 
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“Completing the Square and the Quadratic Formula”). 

 

Example 

Find the vertex of the parabola y = 5x2 + 20x – 12 

y = 5x2 + 20x – 12       Temporarily remove the 5 from in front of the x: 

y

5
 = x2 + 4x – 

12

5
 Complete the square, making sure to add 4 to both sides: 

y

5
 + 4 = x2 + 4x + 4 – 

12

5
 

y

5
 + 4 = (x + 2)2 – 

12

5
 

y

5
  = (x + 2)2 – 

12

5
 – 4 Now put the 5 back where it belongs by multiplying everything by 5: 

y = 5(x + 2)2 – 12 – 20 

y = 5(x + 2)2 – 32 

 

The vertex is at (-2, -32) 

If you are working with parabolas a lot, you may get tired of completing the square each time.  

You can just do it once with the general equation of a parabola, and then use the result of that 

each time.  Here is how it works: 

y = ax2 + bx + c   

y

a
 = x2 + 

b

a
 x + 

c

a
 

y

a
 + (

b

2a
)2 = x2 + 

b

a
 x + (

b

2a
)2+ 

c

a
 

y

a
 = (x + 

b

2a
 )2 + 

c

a
 – (

b

2a
)2 

y = a(x + 
b

2a
 )2 + c – 

b2

4a
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If you compare this to y = a(x – h)2 + k, you will see that - 
b

2a
 corresponds to h, the x-coordinate 

of the vertex.  This means that we can take a shortcut.  For example, the parabola  

y = 5x2 + 20x – 12 will have a vertex with x-coordinate - 
b

2a
 , or - 

20

2 ∙ 5
 = -2. 

If we know that the x coordinate of the vertex is -2, the fastest way to find the y-coordinate is 

by substituting x = -2 in the equation of the parabola.  y = 5 (-2)2 – 40 – 12 = -32.  The vertex is 

located at (-2, -32). 

Now we can convert y = 5x2 + 20x – 12 to the vertex form y = a(x – h)2 + k faster than we did 

before.  h and k are the coordinates of the vertex, which we just calculated, and a is the 

coefficient of the first term, 5.  The vertex form is y = 5(x + 2)2 – 32. 

If you know the vertex and one point on a parabola, you can get the equation of the parabola.  

If you are modeling data that are given to you, look to see if the vertex is obvious from the data. 

(Parabolas are symmetrical, so look for similar y values on both sides of the point that you 

suspect could be the vertex.  Sometimes the data need to be modeled by one half of a 

parabola, so the vertex is the starting point).  When we know the vertex, we use the form  

y = a(x – h)2 + k.  Simply fill in the values for h and k.  For example, if the vertex is at (2,3), the 

equation will look like this:  y = a(x – 2)2 + 3.  If you also have another point (x,y), you can put 

that into this equation to find a. 

 

Example 

The axis of symmetry of the parabola y = 3x2 + bx + 4 is the line x = 1.  Find the value of b. 

Here we know that the vertex is located at some point (1,k).  Let’s fill in what we know: 

y = a(x – 1)2 + k 

y = 3(x – 1)2 + k 

Now, how does that relate to y = 3x2 + bx + 4?  Well, let’s just multiply (x – 1)2 out: 

y = 3(x2 – 2x + 1)2 + k 

y = 3x2 – 6x + 3 + k 

Because k is just a number, we can conclude that b must equal - 6. 
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On the other hand, if you know that the vertex always occurs at x = - 
b

2a
, you can simply fill in 

the values: 

x = - 
b

2∙3
 

1 = - 
b

6
 

b = 1 ∙ - 6 = - 6 

 

If you do not know where the vertex is but you have at least three points on the parabola, you 

can also find the equation.  In this case you would use the form y = ax2 + bx + c.  Filling in three 

separate points will give you three equations where the only unknowns are a, b and c, which 

you can then solve for.  It is particularly helpful if one of your points has an x-coordinate of 0, 

since that gives you the value of c directly.  For three points (x1,y1), (x2,y2) and (x3,y3) we have: 

ax1
2 + bx1 + c = y1 

ax2
2 + bx2 + c = y2 

ax3
2 + bx3 + c = y3 

Here the three unknowns, a b and c, can be found by solving this system of three linear 

equations.  This is most easily done by solving the corresponding matrix (see Matrices). 

If we are provided with the coordinates of two points on a parabola, say (x1,y1) and (x2,y2), we 

can find a set of possible equations for that parabola as follows: 

y1 = ax1
2 + bx1 + c 

y2 = ax2
2 + bx2 + c 

Subtract these two equations to get: 

y1 – y2 = a(x1
2– x2

2) + b(x1 – x2) 

There are many possibilities for a and b, so there are an unlimited number of equations for the 

parabola that passes through the given two points.  To find the simplest one, take a = 1.  Solve 

for b, and then for c. 
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Example 

Find the equation of the parabola that passes through the point (1,-2) and has its axis of 

symmetry at x = 3.  The y-intercept is 8.  

This clever problem disguises the fact that it is providing you with 2 points on the parabola:   

(1,-2) and (0,8).  The third piece of information is that the x-coordinate of the vertex is 3.  That 

gives us a hint that we should be using the vertex form, y = a(x – h)2 + k, with h = 3:   

y = a(x – 3)2 + k   

Remember that k is the y-coordinate of the vertex, not the y-intercept!  Use your two points to 

create two equations with two unknowns: 

-2 = a(1 – 3)2 + k 

 8 = a(0 – 3)2 + k 

Solve this system of equations to get a = 2 and k = -10.  The equation of the parabola in 

standard form is y = 2x2 – 12x + 8. 

 

Basic Graphs 

 

Parabolas are a type of conic section.  If you take a cone and cut it in various ways, you can get 

a circle, an ellipse, a parabola, or a hyperbola.  These conic sections have one or two special 

points called foci, except for the circle for which the focus is really the center.  All parabolas 

have a single focus.  This is the point that all light falling on a 3 dimensional parabolic mirror 

would be focused on.  If you put a parabolic mirror in the sun you can boil water at the focus  

( http://www.youtube.com/watch?v=0xfTl3Ugyjk&feature=related ).  For other conic sections 

the distance to the focus is called c, but for a parabola this is a bit confusing because quadratic 

functions already have an end term called c which is not at all related to the focus.  The 

distance from the vertex of a parabola to the focus is therefore called p by many textbooks, 

although others use c.  Here is a picture of a parabola determined by the equation y = ax2 

where a is a positive number.  The distance from the vertex to the focus is p (or c, depending on 

your textbook), and the focus is located at (0, p).  In this picture p is 4.   

 

http://www.youtube.com/watch?v=0xfTl3Ugyjk&feature=related
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The directrix is a line that runs perpendicular to the axis of symmetry of the parabola, at a 

distance of p below the vertex (or above it if the parabola opens down).  In the picture above, 

the directrix is the blue line underneath the parabola.  By definition, a parabola is the collection 

of all points (x,y) such that the distance from the focus to (x,y) is the same as the distance from 

the point (x,y) to the directrix.  That means that the red line in the picture is the same length as 

the green line.  Then of course the squares of their lengths are also equal. 

It is not hard to find the length of the red line.  By the Pythagorean theorem, the square of its 

length is equal to x2 + (y – p)2.  The length of the entire green line is y + p, so the square of its 

length is (y + p)2.   Now we can say that x2 + (y – p)2 = (y + p)2 

Multiplying out, you get x2 + y2 – 2py + p2 = y2 + 2py + p2.  A lot of that cancels out to give  

4py = x2.  We could also write that as y = 
1

4p
 x2. 

Now we have two equations for this parabola:  y = ax2 and y = 
1

4p
 x2.   
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This means that a =  
1

4p
 , so if we know a we can find p.  4ap = 1 so  p = 

1

4a
.  Since many people 

dislike fractions, you may just see the parabola written as 4py = x2.  You can use either format 

to find p; just make sure that your equation is written correctly.  If you have a parabola 

described by the equation y = 
1

8
x2, and you want to use the format 4py = x2 to find p, rewrite the 

equation as 8y = x2.  Now you can see that p is 2. 

For the parabola y = x2, or 1y = 1x2, the distance to the focus, p, must be ¼.  For this basic 

parabola, the focus is located at (0, ¼).  To get the focus at a nicer distance, I used  

y = 
1

16
 x2 to make the pictures for this section.  You can leave the equation like that or write it as 

16y = x2 to get rid of the fraction.  Either way, p = 4 which puts the focus at (0, 4).  It also 

flattens the parabola, and the flatter the parabola is the more the focus moves outward.  In the 

video linked above, the focus was quite far away from the mirror.  When you first learn about 

parabolas they usually have equations like y = x2 or y = 3x2, but once you start looking at the 

focus you’ll want “flatter” parabolas that have some fraction in front of x2, or alternatively an 

integer in front of y. 

 

 

 

The next picture shows the latus rectum, which is a line through the focus that runs parallel to 

the directrix.  It is marked in orange.  Its main function seems to be to provide additional 

problems for students to solve.  However, it does help you graph a parabola by giving an 

indication of how wide it should be at the area of the focus.  If this item is in your course you 

will be asked to find the endpoints of the latus rectum, which is actually quite easy if you know 

where the focus is. 
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For every point on the parabola, the distance to the focus is equal to the distance to the 

directrix.  So, by definition, half the length of the orange line is equal to the length of the black 

line. 

Because the distance from the vertex to the focus is p, the length of the black line is 2p.  This 

means that the orange line has a total length of 4p.  The focus is at (0,p) for this standard 

parabola, so the endpoints of the latus rectum must be located at (-2p,p) and (2p,p). 

 

 

Shifted Parabolas 

 

When we start moving the vertex, the focus [and the latus rectum] move accordingly.  Let’s 

change y = 
1

4p
 x2 to (y – k) = 

1

4p
 (x – h)2.  You can also write this as 4p(y – k) = (x – h)2.  Now the 

vertex is at (h, k). 
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The next picture shows that when we move the vertex to (h,k) from (0,0), the focus (marked by 

a black dot) moves from (0,p) to (h,p+k).   

 

 

For this example I used y = 
1

16
 x2 and y = 

1

16
(x – 4)2 + 5.   So, h = 4 and k = 5, which moves the 

focus from (0, 4) to (4, 9).  [Note that the points of the latus rectum also move h units to the 

right and k units up (or to the left and down if h and k are negative).  They end up at  

(-2p+h, a + k) and (2p+h, p+k) or in this case (-4, 9) and (12, 9).] 

 

Now, how can we translate all of this to a parabola that opens downward?  The basic equation 

of a parabola is y = ax2.  The parabola opens up if a is positive, and down when a is negative.   

Since a =  
1

4p
 , p will need to be a negative number.  The distance to the focus is |p| since 

distance is always positive.  The image below shows y = - 
1

16
 x2 and y = - 

1

16
(x – 4)2 + 5.  p is -4, 

and the vertex of the parabola is shifts from (0,0) to (4,5): 
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Example 

The focus of a parabola that opens down is located at the point (3, 4).  A point on the parabola 

is (7, 1).  Find the equation of this parabola. 

A quick sketch of this parabola would show that it should look something like this: 
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Since the focus is at (3, 4), the vertex will be located at (3, k).  That provides some information 

to put into the general equation y = 
1

4p
(x – h)2 + k, since we know that h = 3.  We also have a 

point, (7, 1), that we can use for x and y.  However, that still leaves both p and k as unknowns.  

Because the parabola opens down, we know that p has to be a negative number.  We can also 

see that there is a relationship here between p and k.  The y-coordinate of vertex is k, and the 

y-coordinate of the focus is 4.  The distance between the focus and the vertex is |p|, by 

definition.  We can see from the image above that k = 4 + |p|.  Because it is already known that 

p will be a negative number, the absolute value sign will change the value:  k = 4 – p.  Now that 

we have an expression for k, p is the only unknown: 

y = 
1

4p
(x – h)2 + k      Remove the awkward fraction to make it easier to solve:  

4p(y – k) = (x – h)2 

4p(1 – (4 – p)) = (7 – 3)2 

 4p(1 – 4 + p) = (4)2 

4p(-3 + p) = 16 

-12p + 4p2 – 16 = 0 

4p2 – 12p – 16 = 0 

p2 – 3p – 4 = 0 

(p – 4)(p + 1) = 0 
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p = 4 or p = -1 

The only solution here is p = -1, since p must be negative.  That means that k = 4 – – 1 = 5.  The 

equation of the parabola, y = 
1

4p
(x – h)2 + k  is y = - 

1

4
(x – 3)2 + 5, or y – 5 = - 

1

4
(x – 3)2. 

 

 

Side-Opening Parabolas 

 

Next, we will look at parabolas that open to the side.  All of these parabolas have equations of 

the form x = ay2.  If a is a positive number the parabola opens to the right, as shown in this 

picture: 
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The focus of this parabola is located at (p, 0), which happens to be the point (2, 0) in this case.  

Again we see that by definition, the square of the length of the red line equals the square of the 

length of the green line.  The length of the red line is x + p.  We can find the length of the green 

line by using the Pythagorean Theorem.  The square of the length is (x – p)2 + y2.  Therefore,  

(x – p)2 + y2 = (x + p)2.   

x2 – 2px + p2 + y2 = x2 + 2px + p2, so after we cancel terms we get 

y2 = 4px, which is the same as x = 
1

4p
 y2. 

 I made this parabola using the equation x = 
1

8
 y2.  This means that p = 2 and the focus ends up 

at (2, 0). 

[The length of the latus rectum is still 4p, which puts the endpoints at (p, 2p), and (p, -2p).] 

Again, we can move the vertex of the parabola to (h, k), using the equation (x – h) = 
1

4p
 (y – k)2.  

That moves every point over.  The focus ends up at (p+h, k)  

 

If a is a negative number the parabola opens to the left.  The number p will be negative, and the 

distance to the focus is |p|. 
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Circles and Ellipses 

 

(x – h)2 + (y - k)2 = r2     A circle with radius r and center at (h, k) 

(x−h)2

a2
+ 

(y−k)2

b2
 = 1,   a > b      An ellipse with a horizontal major axis and center at (h, k).   

(x−h)2

b2
+ 

(y−k)2

a2
 = 1,   a > b      An ellipse with a vertical major axis and center at (h, k) 

c is the distance from the center of the ellipse to the foci.  c2 = a2 – b2. 

Foci:  (-c, 0) and (c, 0)    or (0, -c)  and (o, c) 

Vertices:  (-a, 0) and (a, 0)    or   (0, a) and 0,-a) 

Covertices:  (0, b) and (0, -b)   or   (-b, 0) and (b, 0)  

Shift these markers as needed by adding (h, k) to the coordinates. 

 

The area of an ellipse with a major half-axis of length a and a minor half-axis of length b is πab 

 

 

Let’s set up a Cartesian coordinate system and draw it magnified, so that each unit is very large.  

Now draw a circle, centered at the origin, with a radius of 1.  If your drawing is big enough, you 

can pick any point (x,y) on your circle and easily see that x2 + y2 = 1.  This just happens because 

the distances x and y are perpendicular to each other, creating a right triangle with a 

hypotenuse of length 1.  We can change the equation for this circle to one that makes it easier 

to graph using a calculator or computer.  y2 = 1 – x2, which means that   y =  ± √1 − x2 .    

Graph this as two separate functions to create a circle.            

If we want to make the circle bigger, we could change our equation to x2 + y2 = 9.  When you 

graph this equation, you will see that it gives us a circle with a radius of 3.  The graph is the red 

circle in the picture below.  The general equation for a circle is x2 + y2 = r2, where r is the radius.  

Using this formula, or the equivalent  y =  ± √r2 − x2  , we can create a circle as big or small as 

we want.   
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It is also possible to move the circle away from the center of our coordinate system.  The green 

circle in the picture above has a radius of 1, and the center is located at the point (2,3).  At first 

it may seem that the simple relationship x2 + y2 = 1 no longer holds.  However, we can account 

for the fact that the center has been moved.  Pick a point (x,y) on the edge of the circle as 

shown in the picture below.  The actual x distance that we use to calculate the radius is now  

x – 2, and the y distance is y – 3.  We can say that (x – 2)2 + (y – 3)2 = 1.   
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If we want the center to be at the point (h,k), we can write (x – h)2 + (y – k)2 = 1.  For a circle 

with radius r, we would write (x – h)2 + (y – k)2 = r2.  To graph the circle we would rearrange that 

to (y – k)2  = r2 – (x – h)2, and then to y − k =  ± √r2 − (x − h)2, or  

y =  ± √r2 − (x − h)2 +  k.  For example, a circle with a radius of 1 centered at (2,3) would be 

drawn using the equation  y =  ± √1 − (x − 2)2 +  3. 

In the previous section we enlarged our circle with radius 1 by changing its equation to 

x2 + y2 = 9.  Dividing both sides by 9, we can see that this equation could also be written as  

 x2

9
 + 

 y2

9
 = 1, or alternatively:  (

x

3
)
2

+ (
y

3
)
2

 = 1.  Dividing both x and y by 3 actually caused the 

little circle to stretch so that its radius is 3 times larger than it was before.  Now let’s stretch our 
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first circle just on the sides, so that it becomes wider only in the direction of the x-axis.  This is 

surprisingly easy to do mathematically.  The equation of the first circle was x2 + y2 = 1.  Now we 

write:  (
x

2
)
2

+ y2 = 1.  What is the effect of this change?  Notice that the “height” of our circle 

doesn’t change.  When x = 0, y is still 1, just as it was before.  However, we now need a bigger x 

to create the same value of y.  At y = 0, x is now 2 instead of 1.  The “radius” of our circle has 

been stretched to a length of 2 units along the x-axis.  It looks like an ellipse.  In fact, it is an 

ellipse.  

 

 

To actually graph the equation (
x

2
)
2

+ y2 = 1 you need to solve for y:  y = ± √1 −
x2

4
.  Graph the 

positive and negative parts of the equation separately. 

 

Every ellipse has a shortest “radius” and a longest “radius” at right angles to each other.  By 

convention, the length of the longest radius is called “a” and the length of the shortest radius is 

called “b”.  Because those are not real radii we instead talk about the longest axis, which is the 

major axis, and the shortest axis, which is called the minor axis.  The length of the major axis is 

2a, and the length of the minor axis is 2b.  It is not necessary for the major axis of the ellipse to 

lie along the x-axis.  Let’s stretch the ellipse in the y-direction.  We can do this by writing:   

(
x

2
)
2

 + (
y

3
)
2

= 1.  This will cause the radius along the y-axis to be 3 units long, because when  

x = 0, y = 3.  “a” now refers to the length of the radius along the y-axis, since it is the longest.  

The major axis of the ellipse lies along the y-axis, and it has a length of 6 units: 
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Remember that a is always larger than b for the ellipse!  This is because we want to use 2a for 

the longest axis and 2b for the shortest axis.  Write your equation as 
(x−h)2

a2
+ 

(y−k)2

b2
 = 1 for 

an ellipse with a horizontal longest axis, and 
(x−h)2

b2
+ 

(y−k)2

a2
 = 1 for an ellipse with a vertical 

longest axis. 

The vertices of an ellipse are considered to be the endpoints of the major axis [(0,3) and(-3,0) in 

the picture above].  The co-vertices are the endpoints of the minor axis [(2,0) and (-2,0)]. 

 

The Foci of an Ellipse 

 

If you lived in society that was not technologically developed, you could still easily draw a circle 

by connecting two sticks with a string, placing one in sandy ground and drawing the circle with 

the other by keeping the string taut, which keeps the radius constant.  In the same way, you 

could draw an ellipse by tying each end of a string to two sticks, and placing them in the ground 

so that there is still a fair bit of slack in the string.  You can then use a third stick to draw an 

ellipse by keeping the string stretched as far as possible.  The points where you place the sticks 

in the ground are called the foci of the ellipse.  The distance from each focus to the center of 

the ellipse is called “c”.  Because the string has a fixed length, the sum of the distances from 

each focus to a random point on the ellipse is always the same.  The length of the longest 
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“radius” or half-axis of the ellipse is “a”.  When your “pencil” is at this point, you can see that 

the length of the string is c + a + (a – c), which is 2a.  When the drawing instrument is at the end 

of the shortest axis, the distance to each focus from this point is the same.  This distance is “a”, 

and the length of the shortest half-axis is “b”, as shown in the image below: 

  

 

Using the Pythagorean Theorem we can see that a2 = b2 + c2, giving us the relationship between 

the three important measurements of an ellipse.  Notice that the actual equation of the 

Pythagorean Theorem is  c2 = a2 + b2, but the measurements of the ellipse have not been 

named to correspond to this convention.  Probably mathematicians can’t imagine that anyone 

might be confused by anything mathematical, so they don’t feel a need to worry about this.  

You may find it easier to remember the odd equation a2 = b2 + c2 if you rewrite it as c2 = a2 – b2.  

There, now at least it looks a bit like the Pythagorean Theorem. 

 

 

Equations of Circles and Ellipses 

 

Just to make life difficult, your textbook will give you equations for circles and ellipses that are 

not in a convenient standard form.  In fact, you may have difficulty telling whether you are 

dealing with a circle or an ellipse at all.  It may help you to know how authors of textbooks can 
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produce these equations for you to puzzle over.  For example, let’s take the simple circle we 

looked at earlier:  (x – 2)2 + (y – 3)2 = 1.  You can easily see that this is a circle with radius 1 and 

center at (2, 3).  Now try actually expanding the squared parts:  x2 – 4x + 4 + y2 – 6y + 9 = 1.  

Rearrange that to x2 – 4x + y2 – 6y = - 12, and give it to someone you don’t like to graph out.  

For even more fun, multiply the whole equation by something, like maybe 42:  42x2 – 168x + 

42y2 – 252y = - 504.  Notice that no matter what I do to this equation of a circle, the coefficients 

of x2 and y2 will always be the same, which gives away the shape of the figure if you know what 

to look for.  To actually get this back to a convenient standard format you must complete the 

square (see “Factoring”):  42(x2 – 4x + …) + 42(y2 – 6y + …) = -504.  The missing numbers are 4 

and 9 as you can easily see by cheating and looking back at how we made the equation.  You 

must add 42 ∙ 4 and 42 ∙ 9 to both sides of the equation to get 42(x2 – 4x + 4) + 42(y2 – 6y + 9) = 

-504 + 546.  This gives you 42(x – 2)2 + 42(y – 3)2 = 42, and you can take it from there. 

The equation of an ellipse can also be rearranged.  Take an average ellipse with its center at  

(h, k):   
(x−h)2

a2
+ 

(y−k)2

b2
 = 1  and multiply both sides by a2b2 to get b2(x – h)2 + a2(y – k)2 = a2b2. 

Then expand the squares, and multiply everything by a random large number.  Notice that the 

coefficients of x2 and y2 will be different, but they will either both be positive or both be 

negative.  This should suggest to you that the equation may represent an ellipse.  Again 

complete the squares to get back to standard form.   

Some graphing programs will accept an equation like x^2 – 4x + y^2 – 6y = - 12 and draw the 

shape for you.  You can probably find one online if you search for “free graphing 

algebra/geometry”.  

 

Example 

 

Find the location of the foci of the ellipse represented by 324(x – 1)2 + 25(y + 4)2 = 36 

First divide both sides by 36 so you get a 1 on the right side:   

9(x – 1)2 + 
25

36
(y + 4)2 = 1.  Then you must make this look like the equation for an ellipse.  

Remembering that dividing by a fraction is the same as multiplying by its reciprocal, you write 

this as  
(x−1)2

1

9

 + 
(y+4)2

36

25

 = 1.  Now you can see that this is an ellipse with its center at (1, -4).  By 

definition a is larger than b, so here 36/25 represents a2, and 1/9 represents b2.  Because a and 

b are distances, their values are always positive.  Take the positive square root (a and b are 

distances, so they are positive) to find that a is 6/5 and b is 1/3.  Knowing that for every ellipse 

c2 = a2 - b2, we find that the value for c2 = 299/225, meaning that c, the distance to the focus, is 
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√299

√225
, or 

1

15
√299.  Because the foci are located on the long axis of the ellipse, the vertical axis in 

this case, they will be found at (1, -4 + 
1

15
√299)  and (1, -4 – 

1

15
√299). 

 

Here is a graph of 324(x – 1)2 + 25(y + 4)2 = 36: 

 

 
 

 

 

Eccentricity of an Ellipse 

 

The distance to the focus, c, and half the length of the longest axis, a, can be used together to 

describe how flattened and stretched an ellipse is compared to a circle.  We define the 

eccentricity of an ellipse as c/a.  If we push the ellipse back into a circle, both foci come 

together to become the center of the circle, and the distance c is zero.  When we stretch the 

ellipse out really far, the focus moves out farther and farther and starts coming quite close to 

the edge, although it never actually gets there (the ellipse would turn into a line segment if it 

did).  Therefore, the eccentricity e is between zero and 1:  0 ≤ e < 1. 
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Deriving the Equation of an Ellipse (Optional) 

 

Those people who are naturally skeptical may wonder if the ellipse that we draw using two foci 

and a string is really the same kind of figure that we obtained by stretching a circle in one 

direction or another.  Fortunately we can prove mathematically that this is indeed the case.  

The following proof shows that for the ellipse  (x/a)2 + (y/b)2 = 1, we can place two foci at 

distances “c” from the origin, so that the sum of the distances from any point (x,y) on the 

ellipse to the foci is always the same, and adds up to 2a.  Therefore, even though we used an 

equation to create the ellipse, it is still the same as if we had used two foci with a string and a 

pencil. 

Draw an ellipse with its major axis along the x-axis, and foci at (-c, 0) and (c, 0).  Pick a random 

point (x,y) on the ellipse in Quadrant I (x and y are both positive).  As we saw earlier, the sum of 

the distances between this point and the foci is 2a.  Let’s call these distances d1 and d2, and use 

the Pythagorean Theorem to describe them. 

d1
2 = (x + c)2 + y2, and d2

2 = (c – x)2 + y2 

Therefore, 

√(x + c)2 + y2 + √(c − x)2 + y2 = 2a 

 

You can’t just get rid of the square roots by squaring both sides, because (a + b)2 = a2 + 2ab + b2.  

Rearrange the equation first, and then square: 

 √(x + c)2 + y2 = 2a - √(c − x)2 + y2 

(x + c)2 + y 2 = 4a2 – 4a√(c − x)2 + y2 + (c – x)2 + y2 

Next, move the square root term to the left and everything else to the right so you can square 

again: 

4a√(c − x)2 + y2 = - (x + c)2 – y2 + 4a2 + (c – x)2 + y2 

√(c − x)2 + y2 = 
1

4𝑎
 (-x2 – 2cx – c2 – y2 + 4a2 + c2 – 2cx + x2 + y2) 

This simplifies to 
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√(c − x)2 + y2 = 
1

4a
 (-4cx + 4a2),  or 

√(c − x)2 + y2 = a - 
c

a
 x 

(c – x)2 + y2 = a2 – 2cx + 
c2

a2
 x2 

c2 – 2cx + x2 + y2 = a2 – 2cx +  
c2

a2
 x2 

x2 -  
c2

a2
 x2 + y2 = a2 - c2 

x2 (1 -  
c2

a2
 ) + y2 = a2 - c2 

Since 1 -  
c2

a2
 = 

a2

a2
 - 

c2

a2
, we can change that to 

x2 
a2− c2

a2
 + y2 = a2 – c2 

 

Dividing both sides by a2 – c2, we get  

x2

a2 + 
y2

a2− c2
 = 1 

Now substitute:  b2 = a2 – c2, which gives the standard equation for an ellipse: 

x2

a2
 + 

y2

b2
 = 1 

 

The Area of an Ellipse (Optional) 

 

To find the area of an ellipse we can compare it with a circle that has the same radius as the 

longest half-axis of the ellipse.   

An ellipse (
x

a
)
2

+ (
y

b
)
2

= 1 has a major half-axis of length a and a minor half-axis of length b 
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A circle x2 + y2 = a2 has a radius of length a.  Rewrite that as (
x

a
)
2

+ (
y

a
)
2

= 1. 

To change the circle (
x

a
)
2

+ (
y

a
)
2

= 1 into the ellipse (
x

a
)
2

+ (
y

b
)
2

= 1, we can divide 
y

a
 by 

b

a
:   

 
y

a
 ÷ 

b

a
 = 

y

a
 x 

a

b
 = 

y

b
 

As we saw earlier, taking the basic equation of a circle (x2 + y2 = 1) and dividing y by something 

causes the y value of the graph to be multiplied by that number.  If we divide y by 3, every y 

value on the graph becomes three times larger.  If we would divide y by 
1

3
, the circle would be 

squished by a factor of 3.  Now we are dividing the original value 
y

a
 by  

b

a
.  By definition b is 

smaller than a, so the circle becomes squished by a factor of  
b

a
.  In fact, in this squished circle 

every y value is only  
b

a
 times as large as the original y value.  You should confirm this by solving 

both the equation of the ellipse and the circle for y2, to get y2
ellipse = b2(1 - 

x2

a2) and y2
circle = a2(1 - 

x2

a2) so that 
ye

yc
 = 

b

a
 

The Italian mathematician Bonaventura Cavalieri (1598 – 1647) reasoned that we can divide 

both the circle and the ellipse up into infinitely tiny strips running from the top to the bottom. 

For each tiny strip of the ellipse the area is  
b

a
 times as large as the area of a tiny strip of the 

circle.  If there are infinitely many such strips then the total area of the ellipse is exactly 
b

a
 times 

the area of the circle.  The area of a circle with radius a is πa2.  
b

a
 times πa2 is πab, which is the 

area of the ellipse. 

 

 



189 
 

 

Hyperbolas 

 

For hyperbolas, put a first and b second, regardless of which one is larger, because a represents 

the space between the vertices. 

x2

a2
 –  

y2

b2
 = 1    A side-opening hyperbola.  Asymptotes:  y = 

b

a
 x  and y = - 

b

a
 x 

y2

a2
 –  

x2

b2
 = 1    A hyperbola that opens to the top and bottom.  Asymptotes:  y = 

a

b
 x  and  y = - 

a

b
 x 

2a:  The distance between the vertices (length of the transverse axis). 

2b:  The distance from the vertex to the asymptote (length of the conjugate axis). 

c:  The distance from the center between the curves to the foci.  c2 = a2 + b2. 

(x−h)2

a2
 – 

(y−k)2

b2
 = 1   and  

(y−k)2

a2
 – 

(x−h)2

b2
 = 1  are centered at (h,k). 

The asymptotes are easy to shift.  Just subtract h from x and k from y: 

y – k = ± 
b

a
 (x – h)  and y – k = ± 

a

b
 (x – h). 

 

 

 

Eventually someone wondered what would happen if you take the equation x2 + y2 = 1 and 

change it to x2 – y2 = 1.  Without using a graphing calculator, we can make some predictions 

about the resulting shape.  If you look at x2 + y2 = 1, you can see that both x and y have a fixed 

range.  y = ± √1 − x2, and x2 is always a positive number.  The smallest value for x2 is 0, so y 

can’t be smaller than -1 or bigger than 1.  Also, you can’t pick a value for x that is larger than 1 

or smaller than -1.  If you did, there would be a negative number under the square root sign.  

Even if you didn’t know that the equation represented a circle, you could predict that your 

graphing calculator would produce a figure with a definite size from this equation.   

Now look at x2 – y2 = 1.  If you look at this equation closely, you can see that although you can 

use any value for y, there is a restriction on x:  x2 = 1 + y2.  Because of the square, the smallest 

possible value for y2 is 0.  You can make x2 very large, but not very small.  In fact, the smallest 
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possible value for x2 here is 1, which means that x has to be greater than or equal to 1, or less 

than or equal to -1. 

No x values larger than -1 and smaller than 1 are possible, but there are no other restrictions on 

x.  This means that the shape defined by this formula does not have a definite size; it extends 

infinitely far along the x-axis in both the negative and the positive direction.  For each value of 

x, the formula supplies two possible values for y [a positive and a negative value].  As x2 gets 

larger, so does y2 

Let’s graph this shape.  Enter the equation x2 – y2 = 1 in a graphing program, or rewrite it as  

y = √x2 −  1 and y = - √x2 −  1.  When you look at the resulting picture, you shouldn’t really be 

surprised that it looks nothing like a circle.  This shape is called a hyperbola.  It has two 

branches, each infinitely large:   

  

 

 

We can manipulate the shape of a hyperbola just like we did with a circle.  The space between 

the two curves corresponds to the values of x that cannot fit in the equation.  Let’s try 

stretching that space out a little:  (
x

3
)
2

– y2 = 1.  Now x has to be smaller than or equal to -3 or 

bigger than or equal to 3, as in this picture: 
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This has the unintended consequence of squishing the curves, because we are actually 

stretching them out in the x-direction.  That is easily fixed by changing our formula to  

(
x

3
)
2

– (
y

3
)
2

= 1 as in the following picture: 
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The next logical question is what happens to the shape defined by  x2 – y2 = 1 if we reverse x 

and y.  The equation for that would be  y2 – x2 = 1.  Now there are certain values that y cannot 

be, while there are no restrictions on x.  In this case y cannot be between -1 and 1.  Our picture 

looks like this: 

 

 

Either way, a hyperbola always has two vertices, which are the “points” of the curves.  The 

imaginary line through those vertices is called the major axis or transverse axis.  The transverse 

axis is either horizontal or vertical. 

For the hyperbola, the distance “a” has been defined as the distance from the center between 

the two branches to the closest point of each branch (the total distance between the branches 

is 2a).  As we have already seen, this distance is determined by the number we use to divide x 

by [or y if it is the first term].  I know it is hard to remember, but this means that you must use a 

in the first term and b in the second, regardless of which one is larger.  The general equation of 

a hyperbola is (
x

a
)
2

– (
y

b
)
2

= 1 or (
y

a
)
2

– (
x

b
)
2

= 1, depending on whether the curves open to the 

sides or to the top and bottom.  You can also write these equations as 
x2

a2
 –  

y2

b2
 = 1 and  

y2

a2
 –  

x2

b2
 = 1 

The vertices of a hyperbola are just like the vertex of a parabola.  They are the points of the 

curve that are closest to the center of the hyperbola.  If you have not shifted your hyperbola 
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the vertices will be found at (a,0) and (–a,0) for a side-opening hyperbola, and at (0,a) and (0,-a) 

for a hyperbola that opens to the top and bottom. 

 

Asymptotes of a Hyperbola 

Let’s consider what happens to the top-and-bottom opening hyperbola 
y2

a2
 –  

x2

b2
 = 1 as x gets 

very large.  
y2

a2
 –  

x2

b2
 = 1 can be written as  

y2

a2
 = 

x2

b2
 + 1.  As x gets bigger and bigger, so does y.  

Eventually, the 1 on the right side of the equation starts to look very small next to the other 

numbers.  
y2

a2
 becomes nearly equal to 

x2

b2
, but it never quite gets there.  If it did, then we’d have  

y2

a2
 = 

x2

b2
.  Taking both the positive and negative square roots of that on each side we get  

± 
y

a
 = ± 

x

b
   or   y = ± 

a

b
 x.  Because the hyperbola never reaches these values, the lines y = 

a

b
 x and  

y = - 
a

b
 x   are asymptotes of the hyperbola. 

Using a similar argument for the side-opening hyperbola 
x2

a2
 – 

y2

b2
, which can be written as  

x2

a2
 = 

y2

b2
+ 1, we find that the asymptotes for this parabola are  y = 

b

a
 x  and y = - 

b

a
 x. 

To illustrate, let’s look at a “side opening” hyperbola with the equation 
x2

4
 – 

y2

9
 = 1 

 



194 
 

 

 
 

The purple lines are the asymptotes of the hyperbola:  y = - 
3

2
 x and y = 

3

2
 x. 

We define the foci of a hyperbola to lie inside each curve on an extension of the line segment 

we called “a”, at a distance c from the center, such that c2 = a2 + b2.  This should work well for 

you, since it looks just like the original Pythagorean Theorem.  Notice that b is the distance 

between the vertex and the asymptote.  2b is the length of the conjugate axis of the hyperbola.  

Although we are drawing b along the vertex here, the conjugate axis is considered to be a line 

in the middle between the two vertices. 

For each point on the hyperbola the distance from that point to the far focus minus the 

distance from the point to the closest focus is a constant.  By selecting one of the points at the 

center of the hyperbola, like (a,0) we can see that this constant is 2a:  The distance from the 

point (a,0) to the focus (-c,0) is c + a.  The distance from (a,0) to the focus (c,0) is c – a.  

Subtracting, we get (c + a) – (c – a) = 2a. 
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Shifting Hyperbolas 

Without modification, the equations 
x2

a2
 –  

y2

b2
 = 1 and 

y2

a2
 –  

x2

b2
 = 1 will always produce 

hyperbolas centered at the origin.  You can shift them just like other conic sections. 

(x−h)2

a2
 – 

(y−k)2

b2
 = 1   and  

(y−k)2

a2
 – 

(x−h)2

b2
 = 1  are centered at (h,k). 

The asymptotes are also easy to shift.  Just subtract h from x and k from y: 

y – k = ± 
b

a
 (x – h)  and y – k = ± 

a

b
 (x – h). 

 

Deriving the Equation of a Hyperbola (Optional) 

We can prove that that for each point on the hyperbola the distance from any point (x,y) to one 

focus minus the distance from that point to the other focus is a constant.   For convenience, 

pick a point (x,y) on the hyperbola (x/a)2 – (y/b)2 = 1 so that x and y are both positive [a point in 

the upper part of the right branch of the hyperbola].  The distance between this point and the 

left focus (-c,0) is  √(c + x)2 + y2 .  The distance from the point to the right focus is 

√(c − x)2 + y2).  Therefore,  √(c + x)2 + y2  -  √(c − x)2 + y2  is a constant, which is 2a. 

Since √(c + x)2 + y2  -  √(c − x)2 + y2 = 2a, we write  √(c + x)2 + y2 = 2a +  

√(c − x)2 + y2 to make it easier to square both sides: 

(c + x)2 + y2 = 4a2 + 4a√(c − x)2 + y2 + (c - x)2 + y2.  This expands to: 

c2 + 2cx + x2 + y2 = 4a2 + 4a√(c − x)2 + y2 + c2 – 2cx + x2 + y2 

Removing the redundant terms and rearranging to make it easier to square again, we get 

4cx – 4a2 = 4a √(c − x)2 + y2      or     cx – a2 = a√(c − x)2 + y2 

Squaring both sides gives:  c2x2 - 2a2cx + a4 = a2(c2 – 2cx + x2 + y2) , so 

c2x2 - 2a2cx + a4 = a2c2 – 2a2cx + a2x2 + a2y2     or    c2x2 + a4 = a2c2 + a2x2 + a2y2 

We want to get rid of c, since this is not part of the equation for the hyperbola.  Substituting    

c2 = a2 + b2   leads us to conclude that: 

a2x2 + b2x2 + a4 = a4 + a2b2 + a2x2 + a2y2 ,  so    b2x2 = a2b2 + a2y2   or   b2x2 - a2y2 = a2b2 
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Now all we have to do is divide by a2b2 to get the equation of the original hyperbola 

(x/a)2 – (y/b)2 = 1.    

 

Reciprocal Functions 

Surprisingly, the equation y = 
1

x
 also describes a hyperbola.  If you rewrite this equation as 

yx = 1, you can see that as x gets bigger y gets smaller, and vice versa.  There is a point where x 

and y are equal.  At this point the hyperbola makes its closest approach to the origin and both x 

and y are equal to +√1, or -√1.  Using this equation, it is not possible to get the curve to 

approach the origin more closely than a distance of √2.  If you change the equation to y = 3/x, 

the shortest possible distance between the curve and the origin is √6, since both x and y are + 

or -√3 here.  For this type of hyperbola, defined by y = n/x, the distance “a” is equal to √2n.  

The asymptotes are the lines y = 0 and x = 0, since either y or x can be very very small but never 

reach 0.  These lines are the x-axis and the y-axis respectively. 
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Sequences and Series 

 

Arithmetic Sequences and Series 

Recursive formula:  an = an-1 + d 

The nth term:  an = a1 + (n – 1)d   or   an = a0 + nd    

The sum of the first n terms:  Sn =  
𝐧

𝟐
(𝐚𝟏 + 𝐚𝐧) 

 

Geometric Sequences and Series 

Recursive formula: an = an-1 r 

The nth term:  an = a1rn-1 

The sum of the first n terms:   Sn  =   
𝐚(𝟏−𝐫𝐧)

𝟏−𝐫
   

The sum of an infinite geometric series with │r│< 1:  Sn =  
𝐚

𝟏−𝐫
    

 

 

Arithmetic Sequences 

There are two types of sequences that you will encounter most often.  The first one of these is 

the arithmetic sequence.  It progresses by adding the same constant amount to each previous 

term.  An arithmetic sequence looks like this: 

3, 5, 7, 9, 11, …    

If you look carefully, you can see that the next number in this sequence should be 13, because 

the numbers are increasing by 2.  Here 2 is called the common difference, d.  For a sequence 

like 1, 4, 7, 10, 13, …, the common difference d is 3.  To determine d, take any term and 

subtract the previous term.  Keep in mind that d could be a negative number, in which case the 

numbers of the sequence keep getting smaller.  d can also be a fraction or a decimal, as in: 

9, 8.9, 8.8, 8.7, 8.6, ….   
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If you have to create your own sequence you should show at least five terms of it so that the 

pattern of your sequence is relatively clear to someone else.  You may think you are showing an 

arithmetic sequence, but if you provide too few numbers someone else could come up with a 

different kind of pattern that also fits those same numbers. 

By convention, we use the letter a with a subscript to identify the terms in a sequence.  The first 

term is a1, the second term is a2, and so on.  An arbitrary term somewhere along the line is 

called an.  Just before an you would find an-1, and just after it an+1: 

a1, a2, a3, a4, a5, …, an-1, an, an+1, … 

To find the next term in an arithmetic sequence, take the last available term and add the 

common difference d.  Keep doing that.  In computer science, you would accomplish this by 

creating a loop in your program that the computer keeps following over and over until some 

specified condition is met.  This is called recursion.  The recursive formula for finding each 

successive term just says in algebra what we just said in words:  to find any arbitrary term an, 

take the previous term (an – 1) and add d: 

an = an – 1 + d 

If you also know the first term, a1, you can generate the sequence from the recursive formula: 

a1, a1 + d, a2 + d, a3 + d, a4 + d, a5 + d, … 

 

Example 

Find a recursive formula for the arithmetic sequence 3, 5, 7, 9, 11, ….   

This sequence can also be written as 3, 3 + 2, 5 + 2, 7 + 2, 9 + 2, etc.  Each term is created by 

adding 2 to the previous term.  The recursive formula is an = an-1 + 2, and a1 = 3.  This says:  

“Start at 3 and find each next term by adding 2 to the previous term.” 

 

Now, suppose that we need to find the 100th term in the sequence 3, 5, 7, 9, 11, ….  Eek, that 

looks like a lot of work!  Fortunately though there is a regular pattern here, so we should be 

able to predict what a particular term will be.  First, let’s look again at how the terms are made.  

To get the second term in the series we would start with 3 and then add 2, the common 

difference.  For the third term we can start with 3 and add 2 twice to get 7.  For the fourth 

term, start with 3 and add 2 three times to get 9: 
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a1 = 3 

a2 = 3 + 2 

a3 = 3 + 2 ∙ 2 

a4 = 3 + 3 ∙ 2 

a5
 = 3 + 4 ∙ 2 

and so on.  We can write 3, 5, 7, 9, 11, … as 3, 3 + 2, 3 + 4, 3 + 6, 3 + 9, … or in a general way as: 

 

a1,  a1 + d, a1 + 2d, a1 + 3d, a1 + 4d, …   

a1, the first term, is just an arbitrary starting number, and multiples of the common difference 

are added to it.  Notice that each time the common difference is multiplied by a number that is 

one less than the number of the term.  For the second term, the common difference has been 

added once, for the third term the common difference has been added twice, and so on.  For 

the nth term the common difference has been added n – 1 times.  We can find an, the nth term 

of an arithmetic sequence or series by using the explicit formula:   

an = a1 + (n – 1)d   

For the sequence 3, 5, 7, 9, 11, …, this formula becomes an = 3 + (n – 1) ∙ 2.  Use the distributive 

property to simplify the part on the right to 3 + 2n – 2, which is 2n + 1.  an = 2n + 1 provides a 

simple formula for finding any term of the sequence.  The first term, a1, is 2(1) + 1, which is 3.  

For the fifth term, n is 5 so we get a5 = 2(5) + 1 which is 11.  Now it isn’t so hard to find the 100th 

term:  a100 = 2(100) + 1 = 201.   

We can find a simpler explicit formula if we start with a0, which is an imagined term that would 

come before a1.  For 3, 5, 7, 9, 11, …, a0 would be 1.  Now the sequence looks like this:   

a0 + d, a0 + 2d, a0 + 3d, a0 + 4d, …   

To get the first term, the common difference is added once, to get the second term it is added 

twice, for the third term it is added three times, and for the nth term it is added n times: 

an = a0 + nd 

This looks simpler and provides the answer you are looking for faster, but you must start by 

finding a0. 
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Example 

Find an explicit formula for the sequence 100, 96, 92, 88, 84, ….  Use your simplified formula to 

find the 10th term. 

Use the general explicit formula for an arithmetic sequence, and fill in what you know.  The 

common difference here is 4, but it is negative since the numbers are going down. 

an = a1 + (n – 1)d                 or:       an = a0 + nd 

an = 100 + (n – 1)(-4)   an = 104 + n(-4) 

an = 100 – 4n + 4                                     an = 104 – 4n 

an = 104 – 4n 

a10 = 104 – 40 = 64 

 

Although an = a0 + nd looks fairly simple to memorize, there could be a problem when you’re 

writing an exam and running out of time.  If you can’t remember the formula for an, you can still 

find the answer by using a shifted sequence.  This method treats a sequence like a function that 

can be shifted.  Suppose we have the sequence 5, 7, 9, 11, ….  This goes up by 2’s, just like 2, 4, 

6, 8, 10,….  Here the base, or simplest form of the sequence is an = 2n.  When n is 1, the formula 

generates 2, when n is 2 the formula generates 4, and so on.  Since the first term of the actual 

sequence is 5, we need to shift the base sequence by adding 3:  an = 2n + 3. 

For 100, 96, 92, 88, 84, …, with a common difference of -4, the base sequence is -4, -8, -12, -16, 

-20, ….  That is the sequence -4n.  Since the first term of the actual sequence is 100, the base 

sequence has been shifted up by 104.  The explicit formula must be an = -4n + 104, just as we 

saw earlier. 

   

Make your own simple arithmetic sequence, and see if you can find the 10th term by using the 

explicit formula.  Check your work by also finding the 4th term using your formula. 

 

   

Example 

Find the common difference d for an arithmetic sequence if the first term is 13 and the 4th term 

is 34.  Then find the second and third terms. 

We can fill in the terms we know: 

13, __ , __ , 34 
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At first you may wonder how you could find the missing terms with so little information.  

However, if you stop and think about it you should realize that to get from the number 13 to 

the number 34 the common difference d has been added three times, since 34 is the fourth 

term.  The difference between 34 and 13 is 21.  Three times the common difference is 21, so d 

must be 7.  You can get this same result by using the general formula an = a1 + (n – 1)d and 

filling in what you know:  a4 = a1 + (4 – 1)d  or 34 = 13 + 3d.  21 = 3d so d = 7.  The second and 

third terms are 20 and 27. 

 

Example 

The following is an arithmetic sequence.  Find the missing terms. 

…, 5, __ , __ , 3.5, ….,  

Here the common difference must be negative because the numbers are getting smaller.  Since 

the total difference between the two numbers is -1.5, the common difference must be -1.5 

divided by 3, or -0.5.  The sequence is:   5.5, 5, 4.5, 4, 3.5, 3,…. 

For an arithmetic sequence, an unknown term that is exactly halfway between two terms can 

be found by taking the average (arithmetic mean) of the two known terms.  Try it out and see if 

you can understand why that is so.  If an odd number of terms are missing, you can easily find 

the middle one of those missing terms because it will be the average of the known terms on 

either side: 

3, __ , __ , __, 15 

The central missing term is 9, because it is the average of 3 and 15:  
3 + 15

2
 = 9.  Once you know 

this term, the remaining ones are also easily found by taking the average.  

If the number of missing terms is even you can use the common difference to find them as we 

saw earlier.  Nick’s Rule uses the method of averages to give you another way to determine the 

first missing term, thereby reducing the remaining missing terms to an odd number that is easy 

to handle.  Nick’s Rule is named after a student who insisted that this should be possible, and 

he turned out to be right. 

Nick’s Rule for finding the first one of m missing terms:   

a1, __ , __ , …. , __ , an 
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a2 = 
ma1+an

m+1
 

You can check that this is correct by using the formula for an:  an = a1 + (n – 1)d.  The number of 

missing terms, m, is n – 2, because a1 and an are known.   

a2 = 
(n−2)a1 + 𝑎1+ (n−1)d

n−1
  

a2 = 
na1−2a1+ a1+(n−1)d

n−1
  

a2 = 
na1− a1+(n−1)d

n−1
  

a2 = 
a1(n−1) + (n−1)d

n−1
  

a2 = a1 + d 
 

 

Geometric Sequences 

The second type of sequence that we need to consider is called geometric.  This ordered 

progression is created by multiplying repeatedly by the same number.  We start with the first 

term a1, and then multiply by a number that will be the common ratio, r.  The sequence looks 

like this:  a1, a1r, a1r2, a1r3, ….  An example would be:  

5, 10, 20, 40, 80, ….   

Here a1 is 5.  The common ratio is easily found by taking a random term and dividing it by the 

previous term.  We see that r is 2 in this geometric sequence.  To find the next term, take the 

previous term, 80, and multiply it by 2 to get 160.  Keep going.  The recursive formula for a 

geometric sequence is: 

an = an-1 r 

To generate the sequence, you must also specify a1. 

Example 

Find the recursive formula for the sequence 3, 15, 75, 375, 1875, …. 
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It is fairly obvious that this is a geometric sequence rather than an arithmetic one, because the 

terms get big very quickly.  You can look at the first two terms to figure out that the common 

ratio should be 5, but if the problem doesn’t state what kind of sequence you are dealing with 

you might want to verify that each term is in fact five times larger than the previous one.  The 

recursive formula for this sequence is an = 5an-1, a1 = 3. 

The common ratio r in a geometric sequence is often a fraction, which causes the numbers to 

keep getting smaller.  It can also be a negative number, which causes the numbers in the 

sequence to alternate between positive and negative. 

Each term in a geometric sequence is made by multiplying a1 by r one more time.  You can write  

5, 10, 20, 40, 80, ….  as 5, 5 ∙ 2, 5 ∙ 2 ∙ 2, 5 ∙ 2 ∙ 2 ∙ 2, 5 ∙ 2 ∙ 2 ∙ 2 ∙ 2, … or in general as 

a1, a1r, a1r2, a1r3, a1r4, … 

The fourth term in the sequence 5, 10, 20, 40 is a1r3, or 5 times 23, which is 40.   To find the nth 

term of a geometric sequence without knowing the previous term, the logical explicit formula 

would be:  

an = a1rn-1 

For the sequence 5, 10, 20, 40, 80, …, a1 is 5, and the common ratio is 2.  To find the nth term in 

the sequence, we can just fill in the explicit formula: 

an = a1rn-1 

an = 5 ∙ 2n-1 

You can use parentheses to write that as 5(2)n-1.  That doesn’t create confusion because the 

exponent always has priority over the multiplication, so it will be clear that only the number 2 is 

raised to the power n – 1.   

Now again suppose that you are writing an exam, and you just can’t remember the explicit 

formula for a geometric sequence, an = a1rn-1.  Here you can also use the simple trick of taking a 

base sequence and shifting it.  It will take a little more skill because we have to deal with 

exponents, but it can definitely be done.  The common ratio is 2, so your base sequence would 

be 2n, as in 2, 4, 8, 16, 32, ….  But the real sequence starts with 5, so now what?  Well, 

geometric sequences involve multiplication.  Just think of what you would need to multiply 2 by 

to get 5.  After a bit of puzzling you can figure that out:  2 ∙ 
5

2
 = 5.  Just take your base sequence, 

2n, and multiply it by 
5

2
:  an = 

5

2
 (2)n.  But wait, isn’t that a different answer than the one we got 
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before?  Well, not really, because we are taking 2n, multiplying it by 5, and dividing it by 2.  
2n

2
 = 

2n

21
 = 2n – 1 , so the answer is still 5(2)n-1. 

 

Example 

Determine the explicit formula for the geometric sequence 3, 1.5, 0.75, 0.375, 0.1875, …, and 

use it to find the 10th term. 

To find the common ratio r, divide a random term by the previous term.  1.5 ÷ 3 = 
1

2
.  The 

common ratio is 
1

2
.  The first term is 3, so that is a1.  Now just plug that into the formula: 

an = a1rn-1 

an = 3(
1

2
)
n−1

 

a10 = 3(
1

2
)
10−1

 = 3 (
1

2
)
9

= 3 (
19

29) = 3 (
1

29) = 3 (
1

512
) = 

3

512
 or 0.005859375. 

If you can’t remember the formula, you can create the base geometric sequence that has the 

common ratio one-half:  
1

2
, 
1

4
, 
1

8
, 

1

16
, 

1

32
, ….  This is the sequence (

1

2
)
n

.  Now you just need to 

multiply by something so the first term will be 3.  That would be 6:  6(
1

2
)
n

.  Think carefully 

about what the exponents mean to see that this is the same expression as 3(
1

2
)
n−1

.  You can 

also see that the 10th term would be 6(
1

2
)
10

, which is 6(
110

210
) = 3 ∙ 2 (

1

210
) = 3 (

2

210
) = 3 (

1

29
). 

Make up a simple geometric sequence and find the 10th term.  Check your work by also finding 

the 4th term using your explicit formula. 

 

Example 

Find the missing terms of the geometric sequence:  __ , 1, __ , __ , 
1

8
. 

We can solve this if we can figure out the common ratio.  Notice that 1 is not the first term in 

the sequence, but we know that each term is created by multiplying the previous term by r, the 

common ratio.  Therefore, 
1

8
 = 1 ∙ r ∙ r ∙ r.  This means that r3 = 

1

8
, so r is the cube root of 

1

8
. 

√
1

8

3
 = 

√1
3

√8
3  = 

1

2
.  The sequence is 2, 1, 

1

2
, 
1

4
, 
1

8
. 



205 
 

 

For any geometric sequence you can find an unknown term that is exactly between two known 

terms by taking the geometric mean of the two known terms.  The geometric mean is a special 

kind of average.  If you take any two numbers a and b and use them as the sides of a rectangle, 

the rectangle will have area ab.  Now consider a square with that same area ab.  The sides of 

the square will have length √ab, which is the geometric mean of the two numbers a and b.  For 

example, the geometric mean of 1 and 9 is √1 ∙ 9 = 3. 

Why does this work for a geometric sequence?  Well, let’s find the fifth term in the sequence 

3, 15, 45, 135, 405, 1215, 3645.  We’ll pretend that we know only the third term, 45, and the 

seventh term, 3645:  √45 ∙ 3645 = 405.  That isn’t magic, as you can see by looking at the 

structure of the terms.  The third term is a1r2, and the 7th term is a1r6.  When you take the 

geometric mean of these two terms, you get √a1r2 ∙ a1r6 = √(a1)2r8 = a1r4, the fifth term. 

 

Example 

The 5th term of a geometric sequence is 324, and the 7th term is 2916.  What is the first term? 

We can find r by saying that a7 is just a5 ∙ r ∙ r.  That means that 2916 = 324r2. 

r2 = 
2916

324
 = 9 

r = 3.  Substitute that into the explicit formula an = a1rn-1, along with one of the terms that we 

already know (a5 or a7):   

a5 = a1r5-1 

324 = a1 ∙ 34  

This will tell you that a1 = 4.  Check your answer by substituting the values for a1 and r into the 

other possible equation, 2916 = a1r7-1. 

 

Nick’s Rule for finding the first missing term of the geometric sequence a1, __ , __ , …. , __ , an is 

a2 = √a1
m an

m+1 .  You can check that this is correct by using the formula an = a1rn-1.  The number 

of missing terms, m, is still n – 2. 

a2 = √a1
n−2 ∙  a1 ∙  rn−1n−2+1

 

a2 = √a1
n−1 ∙  rn−1n−1

 

a2 = a1r 
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Arithmetic Series 

An arithmetic series looks like an arithmetic sequence with plus signs between the terms: 

3 + 5 + 7 + 9 + 11 + … 

Because series have + signs they can be added up.  Once you start learning about series, you 

will probably come across the summation sign Σ.  This is the Greek letter S.  It is really just a 

fancy S, and there is no reason to feel intimidated by it.  This symbol allows you to quickly write 

a series without having to make all of those little + signs.  The notation uses n for “a variable 

number”.  The starting value for n appears underneath the Σ sign, and the ending value is 

written above it.  [Annoyingly, my text editor shows the starting and ending values for n next to 

the sign.]  

 

∑ n10
1   simply means that the starting value of n is 1, the ending value is 10, and all those n’s 

need to be added up.  ∑ n10
1   = 1 + 2+ 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10.   

 

To write the series 3 + 5 + 7 + 9 + 11 + ….   we have to get a little fancier.  Using the formula  

an = a1 + (n-1)d, or just some common sense, we write  ∑ 3 + 2(n10
1 − 1).  Look at this notation 

carefully and translate it bit by bit.  When n=1 we get 3, when n=2 we get 5, and so on.  Of 

course mathematicians can’t just leave things alone; they have to simplify ∑ 3 + 2(n10
1 − 1) to 

∑ 3 + 2n10
1 − 2 which is the same as ∑ 2n + 110

1 .  Again translate it:  when n=1 we get 3, etc. 

just like we did before. 

 

Infinite series often have an infinite sum, so you will be asked to find partial sums instead.  A 

common question would be to find the sum of the first 20 terms of the series 3 + 5 + 7 + 9 + 11 

+ ….  (The sum of the first 20 terms is usually indicated by writing S20).  That would be a lot of 

work, so you might want to figure out a general way of doing this for any arithmetic series.  

Fortunately it is surprisingly easy.   

The method for adding up an arithmetic series was discovered by a young student who was told 

to add up the first 100 counting numbers.  He could have done that the hard way, but he was 

smart and realized that these numbers come in pairs.  The first number plus the last number 

add to 101.  The second number, 2, and the second-last number, 99, also add to 101.  This holds 

all the way, so that the two middle numbers, 50 and 51 again add up to 101.  All we really have 

to do is say that there are 50 pairs of numbers, each with a sum of 101.  The sum is 5050.  That 

sure beats adding all those numbers one by one!  The formula for this trick would be  
n

2
(1 + n).  
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Try it out; it actually works whether n is even or odd.  The sum of the first 11 counting numbers 

is 5.5 times 12 = 66.   

Now what would happen with numbers that are not consecutive, but still have regular spacing 

between them like in our arithmetic series?  Let’s add up the first 6 terms of 3 + 5 + 7 + 9 + 11 + 

….   The 6th term of this series is 13.  Again we can add these numbers in pairs, so we get 3 + 13, 

and 5 + 11, and 7 + 9.  Because there are six numbers there are 3 pairs, and the sum is 3 times 

16, or  
6

2
(3 + 13).  This shows us that the general formula for the sum of the first n terms of a 

series should be:  

Sn =  
n

2
(a1 + an)  

Here an is the last one of the terms that you want to add.  You should try that out with some 

examples so you can see that this formula always gives the correct answer for the sum. 

To get back to our original question, we can now find the sum of the first 20 terms of the series 

3 + 5 + 7 + 9 + 11 + … quite easily.  Using our formula, we get S20 =  
n

2
(a1 + an) or 

20

2
(3 + a20).  

The 20th term, a20, can be found from our previous formula an = a1 + (n – 1)d.  The 20th term is 

the first term, 3, plus 19 times the common difference of 2.  That makes this term 41, and the 

sum will be 10(3 + 41) = 440. 

 

Geometric Series 

5 + 10 + 20 + 40 + … 

This is a geometric series.  The general form of a geometric series is a1 + a1r + a1r2 + a1r3 + a1r4 + 

..., where a1 is the first term.  Subscripts tend to be a bit awkward when there are a lot of them, 

so we’re just going to write that as a + ar + ar2 + ar3 + ar4 + ..., where we all agree that a 

represents the first term. 

We have a natural tendency to order numbers from smallest to largest, so many geometric 

series that we might want to write would have an infinitely large sum.  However, if the absolute 

value of the common ratio r is less than one, the terms of the series keep getting smaller and 

smaller, and the series actually has a definite sum.  It may seem strange that you can add 

infinitely many numbers and get a definite answer, but it can really be done.  You may wonder 

how mathematicians were able to accomplish this amazing feat.  The trick involves finding a 

formula for the sum of the first n terms of a geometric series, and then getting rid of most of 

those terms through a simple subtraction.  Watch closely, because it is a lot like magic: 

First we say that the sum of the first n terms, Sn, is: 
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Sn = a + ar + ar2 + ar3 + ……………. + arn-1 

Then we multiply both sides by r, to get: 

r Sn =  ar + ar2 + ar3 + ……………. + arn 

Even though both these expression have an infinite number of terms, most of them cancel 

when you subtract them: 

Sn - r Sn =  a – arn 

Because we are interested in the general sum Sn, we factor the left side and rewrite this as: 

Sn(1 – r) = a – arn,     so Sn  =   
𝐚(𝟏−𝐫𝐧)

𝟏−𝐫
    

 

Example 

A finite geometric series with a common ratio of 3 has a sum of 728.  The first term is 2.  How 

many terms are there? 

If you look at the sum formula, you see that we know all of the variables except for n.   

Sn  =   
a1(1−rn)

1−r
 

728 = 
2(1−3n)

1−3
 

728 = 
2(1−3n)

−2
 

728 = - (1 – 3n) 

728 = -1 + 3n 

This tells us that 3n = 729.  Because n is an exponent, we need something that will get it down 

for us.  A log function will do that:  n log 3 = log 729.  The natural log function can also be used:  

n ln 3 = ln 729.  Either way, your calculator will tell you that n = 6.  There are 6 terms in the 

series. 

The formula Sn  =   
a(1−rn)

1−r
 works if you are adding up the first 6, or 10 or 100 terms of a series, 

but it is more interesting to see what happens when you are adding up infinitely many terms.  

In fact, things involving infinity are often rather interesting.  As n gets larger and larger, so will 
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rn if the absolute value of r is bigger than 1.  In that case the sum of the series is infinite.  

However, if │r│ is smaller than 1, rn gets smaller and smaller as n gets larger.  For example, if  

r = ½, then r2 = 0.25, r3 = 0.125, and r10 = 0.000975625.  You can see where that is heading.  We 

say that the limit of rn as n goes to infinity is zero.  A limit is often defined as a value that we can 

get really, really close to, but never quite reach. 

Somewhere in the process of us adding up infinitely many terms, the rn part of the formula 

magically disappears, and we are left with Sn =  
𝐚

𝟏−𝐫
.   To see that this is correct, simply divide  

a by (1 – r) using long division.  The result is a + ar + ar2 + ar3 + .... 

This formula makes mathematicians very happy, because we can now find the sum of the 

series.  Notice that when r is a negative number smaller than 1, the terms of the series still 

alternate between negative and positive as they always do when r is negative.  However, when 

r is small like that, the terms themselves will get closer and closer to zero, so there actually is a 

definite sum. 

The subject of infinite series is very closely related to one of Zeno’s paradoxes.  Zeno was a 

philosopher who lived in ancient Greece.  He was interested in the question of infinite 

divisibility.  He developed several paradoxes that help people think about this fascinating 

question.  To see one of these paradoxes, pick a clear space in your home with a wall at the end 

of it.  We will use a straight hallway as an example.  Start at one end, and walk halfway to the 

other end.  Estimate the halfway point between where you are and the end of the hallway, and 

walk there.  You have now walked a distance of 
1

2
 the hallway + 

1

4
 of the hallway.  The remaining 

distance is 
1

4
 of the hallway.  Again go half of this distance, so that there is only 

1

8
 left.  Keep 

repeating this procedure.  Although you approach the end of the hallway very quickly, you can 

never actually get to the wall, since there is always some infinitely small distance left.  Does 

that infinitely small distance ever become zero?  If so when does that happen?  If you walk 

down the hallway in such a weird way, you imagine an infinitely small distance between where 

you are and the end wall.  If you were actually successful in creating this infinitely small 

distance, everything else would become infinitely large by comparison.  Now your hallway is 

infinitely long, so you can never get to the end of it!   

The total distance from one end of the hallway to the other can be represented by the sum of 

the infinite series  
1

2
 + 

1

4
 + 

1

8
 + 

1

16
 + 

1

32
 + 

1

64
 + ...  This is a geometric series with a first term of  

1

2
 and 

a common ratio of  
1

2
.  Use the formula for the sum of an infinite series to reassure yourself that 

you still have 1 hallway [more or less... ]. 
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The formula for the sum of an infinite series can be used for a commonly encountered type of 

geometric series, which is the repeating decimal.   A number like 0.999999999…. is really a 

series that can be written as 

 
9

10
 +  

9

100
 +  

9

1000
 +  

9

10000
 + …. 

Notice that the first term, a is  
9

10
 , and the common ratio is  

1

10
.  Because │

1

10
│is less than 1, we 

can use the formula above to find the sum, even though the series if infinite.   The limit of the 

sum Sn as n becomes infinite is Sn =  
a

1−r
 = 

9/10

1−
1

10

 = 1.  This does not actually prove that 0.9999999…. 

is equal to 1; it merely says that the limit is 1.  Using this technique, we can easily convert a 

number with repeating decimals to a fraction.  Try it out for yourself with 0.3333333…. 

[The alternative, simpler method is to say that S = 0.3333333…., so 10S = 3.333333…. Then  

10S – S = 3.333333… - 0. 0.3333333…, or 9S = 3, so S = 1/3.  This is a good shortcut, but it 

doesn’t really include a convincing argument that it is a valid method when there are infinitely 

many numbers after the decimal point.] 
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Probability and Statistics 

 

Outliers are more than 1.5 times the interquartile range below Q1 or above Q3. 

Z-Score:  z = 
X− μ

σ
 

Normal distribution:  ∿ 68% of the data lie within one standard deviation of the mean, 

                                       ∿ 95% of the data will be within 2 standard deviations 

                                       ∿ 99.7% of the data are within 3 standard deviations  

Choosing r items from a total of n:  (
n
r
) =  

n!

(n−r)!r!
 

The probability of r successes in n trials is (
n
r
)prqn-r 

 

Mean Absolute Deviation: 
∑ |Xi−μ|N

1

N
 

Standard Deviation (population):  σ = √
∑ (Xi−μ)2N

i

N
 , which is equal to  √

∑ Xi
2N

i

N
− μ2 

Standard Deviation (sample):  s =  √
∑ (xi−x̄)2n

i

n−1
   

  

 

 

Basic Statistics Terms 

 

Data that we collect are often numbers.  Numerical data are called quantitative data; they 

represent a quantity (an amount).  If the data are not numbers we call them qualitative, and we 

sort them into categories. 
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If a population is very large, researchers may choose to collect data from a representative 

sample.  The word population here originally referred to people, but now may include animals, 

plants, and inanimate objects.  It is important to select a sample at random in such a way that 

each member of the population has an equal chance to be chosen as part of the sample.  A 

statistic is an attribute of a sample that can be measured.  The corresponding value for the 

population is called a parameter.  Both capital letters and Greek letters (such as μ and σ) are 

commonly used for population values, while regular lowercase letters usually refer to sample 

values.  The number of data points is usually called N for population values, and n for sample 

values.  

The mean is the average of the numbers that make up the data.  Simply add up the numbers 

and then divide by how many numbers you have.  The population mean is indicated by μ or x̄, 

while the sample mean is x̄.  If you have n sample numbers, you can call them x1, x2, x3, …, xn, or 

in general, xi.  ∑ xi
n
1  means the sum of all of the x’s, starting at x1 and ending at xn.  To get the 

mean, divide the sum by n:  
∑ xi

n
1

n
. 

To find the median, order your numbers from smallest to largest.  The median is the middle 

point of these numbers, which means that it is either the middle number or the average of the 

two middle numbers.   For the data set 2, 4, 4, 7, 8, the median is 4 because that is the middle 

number.  For 5, 6, 8, 200, the median is 7 because that is the average of 6 and 8. 

The median divides the data in half, and when you divide those halves in half again you get the 

quartiles.  This division is done the same way as for the median.  If the median is between two 

numbers, these numbers are included in the half that you divide to get the quartiles: 

 

In the picture above, there are an even number of data points.  The median (Q2) is 7, the lower 

quartile (Q1) is 4 and the upper quartile (Q3) is 10.   

If there are an odd number of data points, there is an actual middle number that is the median. 

Put a line through the middle number and then ignore it as you look for the quartiles: 
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Just remember that 50% of the data are always at or below the median, and the other 50% are 

at or above the median.  25% of the data are located in each quartile. 

Outliers are data points that don’t seem to “fit” with the remaining data because their value is 

too large or too small.  Outliers may represent an unusual event or an error in measurement.  If 

you are asked to calculate if a particular point is an outlier, find the interquartile range (the 

distance between the upper and lower quartile) and multiply it by 1.5.  Then add this figure to 

the number that represents the top quartile and subtract it from the number that represents 

the bottom quartile.  A value outside this range may be considered an outlier.   

 

A boxplot (box-and-whisker plot) shows the median, the upper and lower quartiles, and the 

range:  http://www.basic-mathematics.com/box-and-whiskers-plot.html.  The whiskers may 

extend to the highest and lowest values in the data set, or unusually high or low values may be 

marked separately with an asterisk.   

The range is the difference between the highest value and the lowest value.  It shows the 

“spread” of the data.  If the range is large, that could be because there is just a single very low 

or very high value, or it could mean that all of the data points are very spread out.   

 

The Binomial Theorem 

To find the terms of (a + b)n you can use Pascal’s Triangle, or (
n
k
)an-kbk where k starts at 0 and 

goes up to n. 

 

You can thank (or not) Isaac Newton for this theorem, which allows you to quickly expand an 

expression like (a + b)n.  By using successively larger values of n and observing the resulting 

pattern, Newton was able to find a general formula for these expansions.  He then cleverly 

extrapolated his results to fractional values for n to get an expression for √a + b, which is really 

(a + b)1/2.  Oddly enough, when you use fractional values for n your answer ends up having an 

infinite number of terms!   

(a + b)0 =                      1 

(a + b)1 =                   a + b 

(a + b)2 =            a2 + 2ab + b2 

(a + b)3 =     a3 + 3a2b + 3ab2 + b3 

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 

http://www.basic-mathematics.com/box-and-whiskers-plot.html
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Notice that this pattern creates a symmetrical pyramid.  The exponents of a and b are 

completely predictable.  For (a + b)n, the first term is always an, which we could also write as 

anb0 (recall that any number raised to the 0th power is 1 – see “Exponents”).  The second term 

always has an - 1b1, and the pattern continues with an - 2b2, an - 3b3, and so on until we reach a0bn.  

Also note that the exponents of a and b for each term always add up to n:  for a4 + 4a3b1 + 6a2b2 

+ 4a1b3 + b4 the sum of the exponents is always 4. 

The number in front of the ab parts is called the coefficient.  If there is no number the 

coefficient is 1.   

The Instead of writing out the entire pyramid shown above, we can quickly find the coefficients 

from Pascal’s Triangle: 

     1 

                    1      1 

               1     2     1 

                                         1    3     3     1 

               1    4     6     4     1 

                                   1    5    10    10    5    1   etc. 

In Pascal’s Triangle the outside numbers are always 1, and any other number is always the sum 

of the two numbers directly above it.   

The coefficients of the binomial expansion also correspond to the formula for choosing some 

items from a number of items, where the order of the chosen items does not matter.  This is 

called Combinations (see “Choices and Chances” in Algebra 1.)  The first coefficient corresponds 

to choosing 0 items from a list of n, also written as (
n
0
) – read “n choose 0.”  So, for (a + b)5 we 

would find the first coefficient by counting how many ways we could choose 0 items out of a 

list of 5.  Of course there is only 1 way to do that; we just don’t select any.  For the next 

coefficient we use (
5
1
), or 5 choose 1.  There are 5 different ways to do that, and the coefficient 

is 5.  For the third coefficient we choose 2 items out of 5, (
5
2
).  This is slightly more 

complicated.  For our first item we have 5 choices, but once we have selected that item there 

are only 4 choices for the second item.  That gives 5 ∙ 4 = 20 possibilities, but recall that the 

order of the chosen items doesn’t matter.  The choice of “item 3 and item 5” is the same as the 

choice of “item 5 and item 3.”  For every combination of two items, there is another one with 

those same two items reversed.  The total number of possible choices must be divided by 2:   

20 ÷ 2 = 10.  The third coefficient is the result of (
5
3
).  When we choose 3 items out of 5, we 

have 5 choices for the first, 4 for the second, and 3 for the third, for a total of 5 ∙ 4 ∙ 3 = 60 

possibilities.  However, many of those possibilities are the same.  We have to divide that by the 
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number of ways in which we can arrange the chosen items.  When you have 3 items, you have 3 

choices for the first one, 2 for the second, and 1 for the third.  There are a total of 3 ∙ 2 ∙ 1 = 6 

different ways to order these three items.  That means we have to divide the total number of 

possibilities by 6 to account for the fact that many of our choices are really the same thing.  60 

÷ 6 = 10.  Because of the symmetry of the coefficients we don’t have to go any further.  The 

remaining coefficients are 5 and 1.   

There is a formula to calculate how to choose r things from a list of n items, if the order doesn’t 

matter.  A shorthand notation has been developed to express this formula, because it gets very 

tedious to write things like 10 ∙ 9 ∙ 8 ∙ 7 ∙ 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1.  Instead we write 10!, which is 10 

factorial.  The formula for (
5
3
) would be 

5!

2!3!
.  The 2! On the bottom makes sure that we get 5 ∙ 

4 ∙ 3 choices, and then we have to divide by the number of ways to rearrange 3 items which is 3 

∙ 2 ∙ 1 or 3!. 

It may look complicated to calculate 
5!

2!3!
, but a lot of the terms cancel out:  

5∙4∙3∙2∙1

2∙1 ∙ 3∙2∙1
 is the 

same as 
5∙4

2∙1 
.  Always cancel the longest string of numbers, top and bottom. 

If there are r items to be chosen from a total of n items, that is often written as nCr, for n 

Choose r, or with parentheses as (
n
r
).  The formula is (

n
r
) =  

n!

(n−r)!r!
 . 

A note of caution here:  r starts at 0, for the first term.  This means that r would be 3 for the 4th 

term.  Remember to subtract 1 from each term number!  Also, check your work using Pascal’s 

triangle, or a calculator.  On the TI-84 calculator press MATH and navigate to PRB.  Here you will 

find both ! and nCr.  You must choose n first before selecting nCr, and then you can enter r. 

 

The Binomial Distribution 

 

Mathematical discoveries that may seem very abstract are often driven by very practical needs.  

The normal distribution was discovered as a result of people needing to win at gambling.  Once 

it was there, it was soon used for other purposes, but it is still best understood in terms of 

simple probabilities.  The simplest form of probability is that of two equally possible outcomes, 

such as heads or tails on a coin flip. 

Imagine that you have 2 coins.  If you flip them both and see whether they land heads or tails, 

you may not get 1 head and 1 tail.  It is possible to calculate the probability of a particular 

outcome.  In this simple situation, we can consider each possibility separately.  There is only 
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one way to get 2 heads, and only 1 way to get 2 tails, but there are 2 different ways to get 1 

head and 1 tail:  

 

HH 

HT 

TH 

TT 

The outcome of one head and one tail has a probability of 2 out of 4, or ½.  The outcome of 2 

heads has a probability of 1 out of 4, or ¼, and 2 tails also has a probability of ¼.  Note that the 

total probability is 1, because the result will always be one of these 3 possibilities. 

You may already know that to find the probability of two events both occurring, you should 

multiply their individual probabilities.  For two heads, you would say that the probability of the 

first coin coming up heads is ½, and the probability of the second coin coming up heads is also 

½.  ½ x ½ = ¼.  However, you also have to multiply by the number of different ways that this 

event can happen.  Two heads can only happen in one way, so the probability is 1 x ½ x ½.  One 

head and one tail can happen in two different ways, so multiply by 2:  2 x ½ x ½ = ½. 

When you have more coins to flip, the resulting probabilities are a little more complex to find 

by listing all of the outcomes.  For 4 coins, you can reason that there definitely is only one way 

to get 4 heads, and one way to get 4 tails.  The probability of 4 heads is ½ x ½ x ½ x ½ = 1/16.   

It may look like 1 head and 3 tails is a single outcome, but there are 4 ways that this could 

happen:  HTTT, THTT, TTHT, and TTTH.  The universe carefully keeps track of this so that the 

outcome 1 head and 3 tails is four times as likely to happen as 4 heads.  The probability of 1 

head and three tails is 4 x ½ x ½ x ½ x ½ = 4/16 or ¼.  Again for 1 tail and 3 heads, there are 4 

ways, and the probability of that is also ¼.  There are actually 6 ways get 2 heads and 2 tails.  

You can see that by listing them individually, or by calculating it like this:  2 of the coins will be 

tails – how many different ways can we choose these 2 coins out of a total of 4?  Well, to pick 

the first coin we have 4 choices, and then when we go to pick the second there are 3 choices 

left.  There are 4 x 3 or 12 ways to pick those 2 coins.  But, once we have picked them some of 

our choices are the same.  Label the four coins A, B, C, and D.  Then picking A and C is the same 

as picking C and A.  Each choice has a double, because there are two ways to arrange the two 

coins that we pick.  That means the total of 12 must be divided by 2 to get 6 unique ways to 

pick 2 of the coins to be tails, or 2 to be heads.  The probability of 2 heads and 2 tails is 6 x ½ x ½ 

x ½ x ½ = 6/16 or 3/8.  When you do calculations like this, check to make sure that the total 

probability still adds up to 1.  Here we have 1/16 + 4/16 + 6/16 + 4/16 + 1/16 = 1 

The more coins you flip in one session, the more possible outcomes there are.  Fortunately coin 

flips follow the Binomial Theorem: 
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(a + b)0 =                      1 

(a + b)1 =                   a + b 

(a + b)2 =            a2 + 2ab + b2 

(a + b)3 =     a3 + 3a2b + 3ab2 + b3 

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 

When you multiply (a + b)(a + b)(a + b)(a + b), you have to take each individual part and multiply 

it by the other parts.  That creates the same kind of situation as the different combinations that 

result from flipping coins.  For 4 coins it looks like this: 

(H + T)4 = 1HHHH + 4HHHT + 6HHTT + 4HTTT + 1TTTT 

In general, the coefficients for (H + T)n use the formula (
n
r
), where r is the number of heads (or 

tails), and (
n
r
) =  

n!

(n−r)!r!
. 

Here is a bar graph showing the number of ways that 0, 1, 2, 3, 4, or 5 heads can appear when 

five coins are flipped: 

 
 

The bars look tall because I have graphed the frequencies of the outcomes rather than their 

probability.  The probability of each outcome is the frequency of that outcome divided by the 

total number of outcomes.  You can calculate that from the binomial theorem, or more directly 

as straight probability. 

To find the probability of 1 head and 4 tails when five coins are flipped, consider that the 

probability of heads is ½, and the probability of tails is ½.  So, the probability of coin A coming 
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up heads is ½, and coins B, C, D, and E had a probability of ½ to come up tails.  To get the 

probability of the overall event, we have to multiply the individual probabilities: 

½ x ½ x ½ x ½ x ½ = 1/32  

However, the same outcome can be achieved if coin B comes up heads and coin A comes up 

tails.  As we saw earlier, there are 5 different ways to get 1 head and 4 tails.  The overall 

probability is 5 x ½ x ½ x ½ x ½ x ½ = 5/32.  In general, the probability of r heads (or r tails) is 

(
n
r
) [which is =  

n!

(n−r)!r!
 ], multiplied by the probability of each individual head or tail.  

The probability of 0 heads is 1 x ½ x ½ x ½ x ½ x ½  = 1/32, or 0.0325.  That is hard to graph, so 

people often magnify the scale on the y-axis.  The graph below has a 10-magnification on the y-

scale so you can actually see something: 

 
 

The more coins there are, the more a graph like this starts looking like you could draw a smooth 

curve using the tops of the bars.  That curve turns out to be a normal curve, which is a bell-

shaped probability curve.  

Heads or tails are two mutually exclusive outcomes, and there are many others like that.  Often 

they are labeled “Success” and “Failure”, and the probability of each one could be more or less 

than 50%.  Use the same rules even when the probabilities are uneven.  For example, if the 

probability of success is 60% and the probability of failure is 40%, you can calculate the 

probability of 2 successes in 5 trials as follows:  (
5
2
) x 0.6 x 0.6 x 0.4 x 0.4 x 0.4. 

If the probability of “Success” is p, and the probability of “Failure” is q, then the probability of r 

successes in n trials is (
n
r
)prqn-r 
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The Normal Distribution 

 

The normal curve was useful for gambling predictions, but as it turns out many natural 

phenomena have an approximately normal distribution.  For example, if you graph the height of 

a large number of people you get a set of dots tend to form a bell-shaped curve.  We can model 

these data by drawing a normal curve, such that the area under the curve shows the probability 

that a particular person’s height will be between two given values. 

The standard normal curve has a standard deviation of 1, and a mean of zero.  Its formula is 

y = 
1

√2π
e−

x2

2  

Because this looks complicated, you may tend to just glaze over it.  However, you already know 

a lot about functions, so you can see that this is very similar to an exponential function, with a 

base of e.  The minus sign on the exponent means that the value of the function decreases as x 

gets larger:  e−
x2

2  = 
1

e
x2

2

.  Because x is squared, the graph will be symmetrical, with decreasing 

values to the right and the left.  The total probability for multiple possible outcomes is always 1, 

so the area underneath the normal curve is 1.  Normal curves are usually depicted as being 

quite tall, with a magnified y-scale.  However, if the area under the curve has to be 1, the height 

has to be significantly less than 1.  Here is a picture of the standard normal curve drawn from its 

formula without changing the scale: 

 

The maximum value occurs when x = 0, and that value is 
1

√2π
, which is just a little bit less than 

0.4.   The minimum value looks like it is zero, but that is not actually true.  Far-out x-values are 

not impossible, just extremely unlikely. 
1

e
x2

2

 gets smaller as x gets larger or very negative, but it 
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never reaches zero.  The x-axis is a horizontal asymptote, and the graph never touches it.  Still, 

the area underneath the graph is 1! 

The mean, which is the average x value, is zero.  That isn’t always convenient.  For example, if 

you are measuring the height of growing plant seedlings, you might find that your mean is 5 

inches.  When you learned about function graphs, you also learned how to shift those graphs 

right or left.  To change the mean from 0 to 5, you want to subtract 5 directly from x: 

y = 
1

√2π
e−

(x−5)2

2  

Ooh, I altered a really complicated function.  Yes, that is allowed.  In general, to shift the curve 

to have a mean of μ, the population mean, you should subtract μ directly from x: 

y = 
1

√2π
e−

(x−μ)2

2  

 

Standard Deviation 

 

A graph or boxplot shows how “spread out” the data are, but we also need a precise 

mathematical way of expressing that as a number.  The range is somewhat helpful, but it only 

gives information about the highest and lowest value. 

Let’s consider a really simple example.  That’s always a good idea when you are trying to figure 

out how to do something.  Here is a set of data: 

3     9     12 

The first thing you might want to do when figuring out the spread of the data is to see how far 

away each value is from the mean.  In this case the mean, μ, is 8.  We’ll call the first data point 

x1, the second one x2, and the third x3.  In general, we’ll use xi to refer to a non-specific data 

point. We could take each data point and measure its deviation from the mean like this:  xi – μ.  

That gives us three values:  3 – 8, 9 – 8, and 12 – 8.  To get the average deviation we would have 

to add these values and divide by 3:  (-5 + 1 + 4)/3.  But oops, that is 0.  And unfortunately that 

is no accident.  The deviations that are below the mean will always cancel out the deviations 

above the mean.  There are two ways to avoid this problem.  The simplest way is to measure 

the positive distance between each data point and the mean by taking the absolute value, 

|Xi −  μ|.  Then find the mean (the average) of these values, which is the mean absolute 

deviation.  For this simple set of data the mean absolute deviation is (5 + 1 + 4)/3 = 3 
1

3
. 
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The other way to compensate for the fact that the negative deviations cancel out the positive 

ones is to use squares:  (Xi – μ)2.   You can add these squares and average them to get the 

variance.   Then you need to take the square root of this average because otherwise your units 

won’t match up with the original units of your data.  This square root of the average of the 

squared differences is the standard deviation.  The Greek letter s, σ, is used for the standard 

deviation of a population, while a plain letter s is used for the standard deviation of a sample.  

Here we are just using a made-up set of values, which is the entire population rather than a 

sample of it.  The formula is: 

σ = √
∑ (Xi−μ)2N

i

N
, where N is the number of values.  

∑ (Xi − μ)2N
i  is the sum of all of the squares of the differences from the mean:  (3 – 8)2 +  

(9 – 8)2 + (12 – 8)2.  That works out to 25 + 1 + 16 = 42.  To get the average of the squares divide 

by 3, which gives you 14.  The standard deviation is √14, which is about 3.74. 

Alternative formula for the standard deviation: 

 σ = √
∑ Xi

2N
i

N
− μ2 

Is this really the same formula?  To figure that out I used the simple set of 3 data above, and the 

fact that (a – b)2 = (a – b)(a – b) = a2 – 2ab + b2. 

(3 – 8)2 + (9 – 8)2 + (12 – 8)2 = 32 – 2∙3∙8 + 82 + 92 – 2∙9∙8 + 82 + 122 – 2∙12∙8 + 82 

Rearranging that, I got 32 + 92 + 122 – 2∙8(3 + 9 + 12) + 3∙82 

Now divide everything by N, the number of data points, which is 3 in this case: 

32+92+122−2∙8∙(3+9+12)+3∙82

3
  

Each term, which is separated from the other terms by a plus or minus sign, has to be divided 

by 3.  The best way to do that is like this: 

32+92+122

3
 – 

2∙8∙(3+9+12)

3
 + 

3∙82

3
 

Notice that the first part is the sum of all the squares of the data, divided by N.  For the middle 

part, 
2∙8∙(3+9+12)

3
, we can get rid of the 3 by dividing 

(3+9+12)

3
, which we already know is the 

mean, 8.  That leaves: 
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32+92+122

3
 – 2 ∙ 8 ∙ 8 + 82 

which is the same as 
32+92+122

3
 – 2 ∙ 82 + 82, or 

32+92+122

3
 – 82.  Then take the square root, and 

it’s just like filling in the formula: 

σ = √
∑ Xi

2N
i

N
− μ2 = √

32+92+122

3
− 82 

 

If you are examining data from a sample that is randomly taken from a large population, you 

might expect that these sample data would show less variability than what exists in the general 

population.  For example, if the population has just a few very tall people, they probably won’t 

be part of the sample.  To correct for that, when you are calculating the standard deviation of a 

sample, you divide by n – 1 rather than by n:  s =  √
∑ (xi−μ)2n

i

n−1
.  The division by a smaller 

number increases the value you get for the standard deviation, so that it is closer to the actual 

standard deviation of the population.  As the number of values in the sample increases, 

subtracting 1 has a relatively smaller effect. 

These calculations are best done with a graphing calculator or online calculator.    

Most normal distributions don’t have a standard deviation of 1.  The standard deviation is more 

complex to change, but it is done by adjusting the variance, σ2.   That didn’t show in our 

previous formula for the normal curve because its value was 1.  The full equation looks like this: 

y = 
1

√2πσ2
e
−

(x−μ)2

2σ2 , which is the same as y = 
1

σ√2π
e
−

(x−μ)2

2σ2 . 

 

Z-Scores 

 

For any normal distribution, approximately 68% of the data lie within one standard deviation of 

the mean, about 95% of the data will be within 2 standard deviations, and by the time you get 3 

standard deviations away from the mean in either direction you will have included 

approximately 99.7% of all of the results.  This is true regardless of the actual size of the 

standard deviation, or the value of the mean.  Mathematicians have already calculated areas 

under normal distribution curves in great detail, and created tables of the results.  So, if you 
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know that your data has an approximately normal distribution, you can find what percentage of 

those data lie above or below a certain value.  All you do is take that value and find how many 

standard deviations away from the mean it is. 

For example, if the mean height of your plant seedlings is 5 inches, with a standard deviation of 

1.2 inches, you can find how many of those seedlings are likely to be taller than 7 ½ inches.  

First we find how many standard deviations from the mean 7.5 inches would be.  7.5 – 5 = 2.5, 

so that is 2.5 inches taller than the mean.  Just looking at it you can see that this represents just 

over 2 standard deviations, but to get the actual value you need to divide 2.5 by 1.2.  The  

z-score is 
X− μ

σ
 or 

7.5−5

1.2
 ≈ 2.08.  If you look that up in a table you get .9812, which means that 

98.12% of the seedlings are shorter than 7.5 inches, since the z-score gives the area of the curve 

below the given value.  This means that 1.88% of the seedlings are expected to be taller than 

7.5 inches.  Tables are a bit of a pain, and online calculators do the job much faster.   

Your TI-84 will also find z-scores.  Use the normalcdf( function found under DISTR, located 

above the VARS key.  You must tell your calculator that you would like the area under the curve 

from 2.08 to positive infinity, since the normal curve really doesn’t end.  There is no ∞ key, but 

the curve approaches zero very quickly.  Enter normalcdf(2.08,1000), which should return 

approximately 0.0188.  You could even enter normalcdf(2.08,10^99), but it doesn’t really make 

a difference. 

 

Example 

The Koi fish in a large pond have an average length of 12 inches, with a standard deviation of 

1.5 inches.  What percentage of the fish are smaller than 8 inches? 

Fish that are smaller than 8 inches are more than 4 inches below the mean.  Since the standard 

deviation is 1.5 inches, 4 inches represents 4/1.5 or about 2.6667 standard deviations.  The z-

score is: 

z = 
X − μ

σ
 

z = 
8 − 12

1.5
 

z ≈ -2.6667 

This z-score is negative because we are looking at a value below the mean.  Converting that to a 

percentage, we see that the area under the normal curve from negative infinity to -2.6667 

represents approximately 0.38% of the population.  If there are 100 fish in the pond, that would 
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work out to 0.38 fish.  Be careful about rounding that to zero, as it is still quite possible that 

there is actually a very small fish in the pond. 

 

We can also start with a percentage, and find an associated value.  Lets look at the lengths of 

the longest 20% of the fish in the example above.  In this case we need the z-score associated 

with that percentage.  Because we always count from left to right, we are really talking about 

finding a value at the 80% mark.  If you are using a z-score table, you would look for the value in 

the body of the table that is closest to 0.8000, and then find the associated z-score.  On my 

calculator, I go to DISTR (above the VARS key), and select invNorm(.  Entering a value of 0.8 

returns a z-score of .8416.  This z-score is positive because it is 0.8416 standard deviations 

above the mean.  Once you have a z-score you can find a value: 

z = 
X − μ

σ
 

0.8416 = 
X − 12

1.5
 

1.2624 = X – 12  

X = 13.2624 

The longest 20% of the fish are about 13 ¼ inches or longer. 

 

 

 

Margin of Error 

Even if we select a perfectly random sample, it may not accurately represent the population it 

was taken from.  We can calculate a margin of error by using the following formulas: 

Margin of Error = Z 
s

√n
  or  Z√

p̂(1− p̂)

n
 

The first formula is for numerical population parameters.  Here the sample standard deviation s 

is used to estimate the standard deviation for the population, σ.  That works if the sample size 

is sufficiently large.  Just use whatever standard deviation value is proved in your problem.  If 

there is more variability in the population for the characteristic we are measuring, there is more 
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chance of error.  The size of the sample is indicated by n.  Notice that the margin of error will 

get smaller as the sample size gets larger.  Z is the z-score associated with the confidence 

interval.  If we want 99% of all possible samples to include the actual population parameter, 

within the margin of error, we have to use Z = 2.576.  More commonly people will allow for 5% 

of the samples to be outside the limits given by the margin of error, by using Z = 1.96.  This 

means that there is a 1 in 20 chance that the true value is not in the range indicated by your 

sample.  For example, if a researcher finds that the average weight of a population of frogs is 

200 grams plus or minus 10 grams, it is quite possible that the actual average weight of these 

frogs is 185 grams.  He just happened to catch more fat frogs.  However, we can say that it is 

more likely that the average weight is actually between 190 and 210 grams. 

The second formula is used if you are looking for a proportion, such as the percentage of 

people who will vote for a certain presidential candidate.  p̂ is the number of people in your 

sample who say they will vote for the candidate, divided by the total number of people in the 

sample.  Polls commonly use a 95% confidence interval. 
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Systems of Equations 

If you have an equation with two unknowns, there is no way to get a specific numerical answer 

for one of the unknowns.  However, if you have two equations containing the same two 

unknowns, you can usually find the values of both the unknowns.  We can solve a system of 

equations by substitution, or by adding (or subtracting) the two equations - see Algebra 1 

topics. 

If you are given three equations containing three unknowns, you can still use the same 

strategies.  [Graphically the solution represents the intersection of three planes, since we can 

draw a plane using an equation like z = x + 2y + 3.  These problems have been carefully selected 

for you so that the intersection is always a single point.]  Use two of the equations to eliminate 

one of the unknowns.  Addition is usually the most efficient method here.  Then use another 

combination of two equations and again eliminate the same unknown.  This should give you 

two different statements containing two unknowns, which can now be solved.  If the unknowns 

are x, y and z, it is usually expected that you will eliminate x to get two equations containing y 

and z.  Then you will use these two equations to obtain a value for z.  The remaining variables 

are found by substituting the known values into the equations. 

1)  2x +   y + 3z  =  1 

2)  4x + 3y + 5z =  1 

3)  6x + 5y + 5z = -3 

Eliminate x from equations 1 and 2 by multiplying equation 1 by -2, and using addition.  Be very 

careful to multiply the entire equation by -2:   

      -4x – 2y – 6z = -2 

       4x   + 3y + 5z =  1 

                   y   -  z  = -1 

Eliminate x from equations 2) and 3) by multiplying the second equation by 3 and the third 

equation 3 by -2: 

     12x + 9y + 15z = 3 

    -12x - 10y - 10z = 6 

                 - y  + 5z = 9 

Now solve the two equations with two unknowns: 
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 y  –  z = -1 

-y + 5z = 9 

        4z = 8 

          z = 2  Substitution then gives y = 1 and x = -3.  Always check your answers! 

 

To create your own problems, simply pick some (small) values for x, y and z, and create three 

equations.  See if you can get your original numbers back when you solve the problem. 

 

A graphing calculator or computer can solve systems of equations and help you figure out 

where you made those pesky little mistakes.  Here is an online one:  

http://easycalculation.com/matrix/matrix-algebra.php.   

 

To use your TI-84 calculator press 2nd -> matrix-> edit, and enter 3x4 as the size of the matrix.  

Enter only the coefficients of x, y and z, and the number after the equals sign.  For the problem 

above, the matrix would look like this:  [
2
4
6

    1
    3
    5

    3
    5
    5

   1
   1

   −3
].  Press 2nd –> quit to leave the screen.  

Return to the matrix menu and select MATH.  The option you want is rrref( , which is so far 

down that it is faster to scroll up.  Now you have to enter the matrix you edited (usually  

matrix A), so press 2nd -> Matrix and select the proper matrix.  When you press enter the 

solution appears in the following form: 

[
1
0
0

    0
    1
    0

    0
    0
    1

  −3
   1
   2

].   

 

This says that  

1x + 0 y + 0z = -3  

0x + 1y + 0z = 1  

0x + 0y + 1z = 2. 

 

Systems of equations can also be solved if one or more of the equations are not linear.  For 

example, we could solve 

y = x2 

y = x 

http://easycalculation.com/matrix/matrix-algebra.php
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The solution would represent the point(s) where the curve and the line intersect.  Because we 

are dealing with a curve and a line there are often two solution points.   

You can solve this system of equations by simple substitution:  if y = x2 and y = x, then x = x2.  Be 

careful when solving this, since you may be tempted to divide both sides of the equation by x.  

Before you do that, consider if x could be 0!  In this case that will give you one solution.  For the 

other one you may divide by x to get 1 = x2. 

If you use subtraction you will get x2 – x = 0.  This might suggest to you that you can factor:   

x(x – 1) = 0, so either x = 0 or x – 1 = 0.   

For x = 0, y = 0 and for x = 1,y = 1.  The solutions are (0,0) and (1,1). 

A graph of both equations will show the intersect points. 
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Linear Programming 

Linear programming problems involve maximizing or minimizing some quantity that depends 

on more than one variable.  While real-world problems of this type are often complex and best 

solved by a computer program, the ones in your course will be simple enough to solve by hand.  

The most common type of problem involves maximizing profit where this profit depends on 

two variables.  Usually both x and y must be greater than or equal to zero, and there are various 

other constraints that limit the values of the variables in some way.   

To help us understand what it really going on here, we will look at a simple problem. 

Joe’s little factory produces white and neon-yellow ping pong balls.  The maximum number of 

white balls that can be made is 8,000 (0 ≤ x ≤ 8,000), and the largest number of yellow balls that 

can be produced is 4,000 (0 ≤ y ≤ 4,000).  Joe’s father is very wealthy and owns a chain of sports 

supply stores.  Each month Joe’s father buys all of Joe’s ping pong balls and pays him whatever 

it costs to make them, plus $5,000.   Find the maximum profit. 

 

In this odd but very simple arrangement the profit P is always 5,000, and this is represented by 

the equation P = 5,000 

Because we are working with 3 variables in these problems, we need a 3-dimensional graph to 

really represent them properly.  We use a z-axis that is perpendicular to the x-y plane, and 

graph P on the z-axis.  Since P is always 5,000 in this problem, the graph is a level plane that sits 

at a distance of 5,000 above the x-y plane.   

 

This graph was created with MathGV, using the p, x and y values in thousands.  The plane 

representing P appears at a distance of +5,000 along the z-axis.  The boundaries of the plane 

are x = 0, x = 8,000, y = 0 and y = 4,000. 
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For this particular problem there is no minimum or maximum value for P.  The plane is level and 

P is the same everywhere. 

One day Joe and his father have a fight, and Joe decides to sell his ping pong balls to a rival 

store instead.  After looking at the numbers, Joe realizes that he can make a profit of 30 cents 

on the white ping pong balls, and 25 cents on the yellow ones.  The equation that represents 

the total profit is now P = .30x + .25y.  Find the values for x and y that will give the maximum 

profit, assuming that 0 ≤ x ≤ 8,000 and 0 ≤ y ≤ 4,000. 

 

The profit P can still be represented by a plane because this is a linear equation in x and y, but 

the plane is tilted.  Again the boundaries of the plane are x = 0, x = 8,000, y = 0 and y = 4,000.  

The minimum value of P is at the lowest corner of the plane, which corresponds to x = 0 and y = 

0.  That really makes sense, since the lowest profit will occur when no ping pong balls are 

produced.  The largest value of P is at the top corner of the plane, which corresponds to  

x = 8,000 and y = 4,000 on the graph.  This means that x should be 8,000 and y should be 4,000 

for maximum profit.  That makes sense too since producing the maximum number of ping pong 

balls would make the most profit for Joe. 

Gab yourself a plane so you can try this out.  The top of a box is most convenient.  No matter 

how you tilt the plane, if there is a single highest point it is always at one of the corners.  The 

corners of the plane are easy to find mathematically, since they are located where the 

boundary lines intersect.  In our simple case, the top corner of the plane is sitting above the 

intersection of the lines x = 8,000 and y = 4,000.  Plug these values into the equation for P to get 

3400. 

In general, this works for non-rectangular planes too.  All we need to do is find the boundary 

lines and see where they intersect, so we can find all the corners of the plane above them.  

Then we have to test out the different values of P at those points to see where P is the greatest. 
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Matrices 

Matrices were already used by the Chinese sometime before the year 200.  They were 

developed to solve systems of linear equations.  You are already familiar with simple systems 

like 

5x + 3y = 11 

   x + 4y = 9 

When you have more complicated systems of linear equations, they can be solved more 

efficiently using matrices.  Computer programmers find matrices handy to store and manipulate 

data.  Another use for matrices is to create secret codes that are just about impossible to break.   

Matrices are described by the number of rows and columns they have.  The matrix 

[
2 0 5

−3 1 7
] has two rows and three columns, so it is a 2 x 3 (read as 2 by 3) matrix.  In general, 

an m x n matrix has m rows and n columns.  

If two matrices have the same dimensions, you can add or subtract them by adding or 

subtracting their entries.   

 

Solving Systems of Linear Equations with Matrices 

 

Let’s see how we can use matrices to solve the simple system of equations mentioned above: 

5x + 3y = 11 

   x + 4y = 9 

The matrix associated with this system is called a coefficient matrix because it is made up of 

the coefficients of the variables.  The coefficient matrix is   [
5 3
1 4

].  The entire system can be 

put into an augmented matrix, like this:  [
5 3
1 4

|
11
9

]  

Matrices may be manipulated to solve a system of equations.  Valid manipulations are  

1. Exchanging two rows 

2. Multiplying a row by a constant 

3. Changing a row by adding or subtracting a multiple of another row 
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You can perform any of these manipulations in any order until you get the desired result.   

For example, for the matrix [
5 3
1 4

|
11
9

], we can exchange the two rows to get [
1 4
5 3

|
9
11

].   

Then we can change the bottom row by subtracting 5 times the top row from it.  That gives us 

[
1 4
0 −17

|
9

−34
].  Notice that the top row remains unchanged. 

Now divide the bottom row by -17, which is the same as multiplying by - 
1

17
, to get [

1 4
0 1

|
9
2
].   

When you change this augmented matrix back into a system of equations, you can find the 

solution: 

 x + 4y = 9 

0x + 1y = 2 

Because y = 2, x must be equal to 1.  Notice that we are able to obtain the solution easily now 

because the coefficient of x in the second row is zero, and the coefficient of y is 1.  The first row 

conveniently has a coefficient of 1 for x.  However, there is still a calculation involved. 

The Reduced Row Echelon Form allows you to read the solution to a system of equations 

directly from the resulting matrix.  You can ask your graphing calculator to get it for you (rref in 

the “MATRIX” section under “MATH”), or find it by hand.  To see how to do it manually we will 

look at an example: 

2x + 3y = 13 

  x + 2y = 8 

Ignore the variables, and enter the numbers into an augmented matrix: 

[
2 3
1 2

|
13
8

]  

The line always takes the place of the equals sign.  (Your graphing calculator will not need a line 

to solve the system, so you would just enter the data into a 2 x 3 matrix.)  We want to start by 

subtracting two times the second row from the first to get 

[
0 −1
1 2

|
−3
8

]  

Then we reverse the rows: 

[
1 2
0 −1

|
8

−3
]  
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Next we would like to have a zero as the second entry in the first row, so we add two times the 

second row to the first: 

[
1 0
0 −1

|
2

−3
]  

Multiply the second row by -1 to get a positive leading entry: 

[
1 0
0 1

|
2
3
]  

Now convert this augmented matrix back to a system of equations to quickly see the solution: 

1x + 0y = 2 

0x + 1y = 3 

If you have a system of three linear equations, you can use the same methods.  The reduced 

row echelon form will look something like this: 

[
1 0 0
0 1 0
0 0 1

|
3

−7
4

] 

For each of the variables x, y, and z you can read the value directly from the resulting matrix. 

 

Matrix Multiplication 

 

You can multiply a matrix by a constant, just by multiplying each entry in the matrix by that 

constant. 

To multiply two matrices, you multiply the rows of the first matrix by the columns of the second 

matrix.  That seems rather arbitrary and confusing, but we can look at some history to see the 

reason for it.  Back in the 19th century the mathematician Arthur Cayley was interested in 

changing points (x, y) to new points (x’,y’) in an orderly way.  These changes are called 

transformations, and they work like this: 

x’ = ax 

y’ = dy 

This uses information from the original x coordinate to transform it to a new x coordinate, and 

information from the original y coordinate to transform it to a new y coordinate.  a and d 

represent constants that accomplish the desired transformation.  We can also use information 
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from both the original x and y coordinate to determine the new x coordinate, and do the same 

for the new y coordinate: 

x’ = ax + by 

y’ = cx + dy 

Here a, b, c and d are constants that accomplish this slightly more complicated transformation.  

Cayley used matrices as a shorthand notation for these transformations (you can imagine that 

he would get tired of writing the whole thing out completely each time).  He just used the 

matrix [
a b
c d

] to describe the transformation.  Now we have a systematic way to transform 

points (x, y) or vectors [
x
y] into other points or vectors in a predictable and often useful way.  

Let’s look closely at some specific examples.  Set up a coordinate system and draw an arrow 

from the point (0,0) to the point (3,4).  By the Pythagorean Theorem, the length of this arrow 

will be 5 units.  Next, we will reflect the arrow over a line.  Here the line is looked at as a mirror, 

and each new point is the mirror image of the original point.  If you reflect over the line y = x, 

what happens is that each x-coordinate turns into a y-coordinate and vice versa.  Try it out.  Our 

original arrow from (0,0) to (3,4) changes to an arrow from (0,0) to (4,3).  We can write that as: 

x’ = 0x + 1y 

y’ = 1x + 0y 

The new x-coordinate is the old y-coordinate, and vice versa.  We could write the 

transformation we just did as   [
0 1
1 0

].    

Now let’s take the original arrow and rotate it clockwise by 90 degrees.  The tip of the arrow is 

at (3,4), and after a 90 degree rotation the tip is at (4,-3), while the origin remains at (0,0).  

Notice that the original y coordinate of the tip has become the x coordinate, and the x 

coordinate has been multiplied by -1 and becomes the y coordinate.  This transformation looks 

like this: 

x’ = 0x + 1y 

y’ = -1x + 0y 

The point (0,0) is unchanged, and (3,4) is transformed into (4,-3) 

If we apply this same transformation to our new arrow, it rotates another 90 degrees clockwise: 

x” = 0x’ + 1y’ 

y” = -1x’ + 0y’ 
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Substituting for x’ and y’, we could write this as one single transformation: 

x” = 0(0x + 1y) + 1(-1x + 0y) 

y” = -1(0x + 1y) + 0(-1x + 0y) 

which gives 

x” = 0x + 0y – 1x + 0y 

y” = 0x – 1y + 0x + 0y 

so, 

x” = -1x + 0y 

y” =  0x – 1y 

This rotates our original arrow 180 degrees to put its tip at (-3,-4). 

Looking at the general case, two successive transformations can be written as  

x’ = ax + by 

y’ = cx + dy 

 

x’’ = ex’ + fy’ 

y” = gx’ + hy’ 

where e, f, g, and h are the set of numbers that accomplish the second transformation.    The 

shorthand for this second transformation would be    [
e f
g h

]. 

If we take these two transformations together, we see that  

x” = e(ax + by) + f(cx + dy) 

y” = g(ax + by) + h(cx + dy) 

(I just used copy and paste to substitute for x’ and y’).  Multiplying that out and rearranging to a 

new matrix form, we get:  

x” = (ae + cf)x + (be + df)y 

y” = (ag + ch)x + (bg + dh)y 

The product of the two transformations can be written as the new transformation matrix 

[
ae + cf be + df
ag + ch bg + dh

] 
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This leads us to the idea that we could multiply the two transformation matrices to get  

[
e f
g h

] ∙ [
a b
c d

] =  [
ae + cf be + df
ag + ch bg + dh

] 

To get the first entry in the first column, multiply the first row by the first column. 

To get the second entry in the first column, multiply the second row by the first column. 

To get the first entry in the next column, multiply the first row by the second column. 

To get the second entry in the next column, multiply the second row by the second column. 

Because of the way matrix multiplication is done it is not always possible to multiply two 

matrices.  The number of columns in the first matrix must match the number of rows in the 

second matrix. 

Notice that the way this is set up is that when you multiply one matrix by a second, you put the 

second one in front.   This is called pre-multiplying.   Matrix multiplication is not commutative, 

which means that you don’t get the same result if you do it the other way around. 

Going back to our specific example of rotating an arrow, we can multiply the two matrices like 

this: 

[
0 1

−1 0
] [

0 1
−1 0

] =    [
0 ∙ 0 + 1 ∙ −1 0 ∙ 1 + 1 ∙ 0

−1 ∙ 0 + 0 ∙ −1 −1 ∙ 1 + 0 ∙ 0
] = [

−1 0
0 −1

] 

This is the same transformation matrix we obtained above. 

 

 

Determinants 

 

The first point to note about determinants is that they only apply to square matrices.  When 

there is a square coefficient matrix in a system of linear equations that system has the same 

number of statements as the number of unknowns.  This is usually the ideal situation for 

getting a unique solution for the system.  If there are fewer statements than unknowns the 

system will not have a unique solution.  If there are more statements than unknowns the 

system is called overdetermined, and the additional statements may cause the system to be 

inconsistent so that there is no solution. 

Even if it is associated with a square matrix, a system of linear equations may not have a unique 

solution.  Consider the system 
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2x + 3y = 10 

4x + 6y = 20 

It has a square coefficient matrix associated with it, [
2 3
4 6

], and if you try to solve it you get  

0 = 0.  For any x you select, there is a corresponding value of y that makes this system of 

equations true.  The fact that there is no unique solution can be easily determined beforehand.  

I have simply taken the first equation and multiplied it by 2 to get the second.  This makes 2 and 

3 nicely balanced with 4 and 6.  In fact, 2 times 6 = 3 times 4, or 2 x 6 – 3 x 4 = 0.  The numbers 

that come after the equals sign don’t really matter if we are just looking to see whether the 

system has a unique solution.  If the 10 and the 20 balance in the same way as the left-hand 

parts of the equations, then the system has an infinite number of solutions.  If they don’t 

balance in that way, there are no solutions at all.  We can see if there is a unique solution or not 

just by looking at the coefficient matrix [
2 3
4 6

].  In general, for any matrix [
a b
c d

], if  

ad – bc = 0 then the corresponding system of equations does not have a unique solution.   

ad – bc is called the determinant of this 2 by 2 matrix. 

 

 

Actually, determinants make sense even in unexpected ways.  If you look at a random matrix 

[
a b
c d

] as being composed of two vectors, [
a
c
] and [

b
d
], the absolute value of the determinant 

turns out to be the area of the parallelogram defined by these two vectors.  

This image shows two vectors [
a
c
] and [

b
d
].  The area of the parallelogram they define can be 

calculated: 
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The total area of the large rectangle is (a + b)(c + d).  From this we subtract the two small 

rectangles that have area bc, and also the four triangles.  Two of the triangles have area  

½ ac, and the other two have area ½ bd.  The area of the parallelogram is (a + b)(c + d) – 2bc – 

ac – bd, which is ac + ad + bc + bd – 2bc – ac – bd = ad – bc.  Then add an absolute value sign 

because area is always positive even when the vectors have negative components:  |ad –  bc|. 

If the determinant is zero, this area is zero because the vectors are parallel.  Just draw the 

vectors [
2
4
]and [

3
6
] from the example above so you can see what is happening.   

 

Another interesting fact is that the linear transformation described by the matrix [
a b
c d

] will 

transform a figure (by moving its defining points) into a figure with an area given by the original 

area times the absolute value of the determinant of the matrix.   
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Even more amazing is that both of the above facts also apply to the determinants of 3 x 3 

matrices if we consider volume rather than area.  The determinant of an n x n matrix that is 

even larger represents the volume of a figure in n-dimensional space. 

______________________________________________________________________________ 

The determinants of larger matrices are more difficult to find, but fortunately we have 

calculators that can do that for us.  If you don’t have a graphing calculator handy you can still 

find the determinant manually. 

 

Example 

Find the determinant of  [
2 0 4
3 1 2
5 4 6

].   

 

The determinant of a matrix is usually indicated by placing lines on either side of the numbers, 

like this:  |
2 0 4
3 1 2
5 4 6

|. 

First, select a row or column of your square matrix, preferably one with one or more zeros in it.  

Usually people select the first row or column so they don’t get mixed up, and for this example I 

will use the first row.  Next, look at the first entry in your row, which is 2 in this case.  This entry 

has the general form a11, where the subscripts mean the first row and the first column.  Add 

these subscripts and note that the result is an even number.   Next, cross out all of the entries 

in both the row and the column that this entry belongs in.  That leaves you with 
1 2
4 6

.  The 

determinant of this smaller matrix is called the minor of 2.  Multiply 2 by its minor,  |
1 2
4 6

|. 

The next entry in the row is 0, which is a12, indicating that it is in the first row and the second 

column.  When you add these two subscripts you get an odd number, so we will subtract the 

product of this entry and its remaining determinant.  After crossing out, we look for the 

determinant of  
3 2
5 6

.  So far our calculation reads: 

2 ∙ |
1 2
4 6

| – 0 ∙ |
3 2
5 6

| …. 

The last entry in the row is 4, which is entry a13.  Adding its subscripts gives an even number so 

we add the product of this entry and its remaining determinant |
3 1
5 4

|, to get: 
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2 ∙ |
1 2
4 6

| – 0 ∙ |
3 2
5 6

| + 4 ∙ |
3 1
5 4

| which is equal to 2 ∙ -2 – 0 + 4 ∙ 7 = 24.  (Choosing the row 

with the 0 allowed me to skip calculating one of the determinants). 

In general, we find the determinant of a square n x n matrix A as follows:  Mij is the smaller 

matrix obtained by deleting the row and column containing entry aij (where aij is the entry in the 

ith row and jth column).  The cofactor of entry aij is Aij, which is equal to (-1)i+j ∙ det(Mij).  Choose 

a row or column and multiply each successive entry by its cofactor. 

If we choose row i, then det(A) = ai1Ai1 + ai2Ai2 + ai3Ai3 + …+ainAin 

If we choose column j, then det(A) = a1jA1j + a2jA2j + a3jA3j + …+anjAnj 

Note that we could use this procedure with any size square (n x n) matrix, but when a minor is 

larger than 2 x 2 we have to find its determinant by using its entries multiplied by their 

cofactors, etc, etc. until the minors are small enough.  This can get very tedious.  

______________________________________________________________________________ 

If a matrix has one row or column consisting of all zeros, its determinant must be zero.  You can 

see this by using this row or column to calculate the determinant, or by thinking about this 

matrix as the coefficient matrix of a linear system that does not have a unique solution.  For 

example, the system 

x + 3y + 4z = 12 

3x – y – 2z = 9 

will not have a unique solution.  It has an associated square coefficient 

matrix [
1 3 4
3 −1 −2
0 0 0

]with a determinant of 0.   

 

 

Cramer’s Rule 

 

We have seen that a system of linear equations can be solved by manipulating rows of its 

augmented matrix.  Some people, like me, find that when they do this they inevitably make at 

least one small mistake and their solution doesn’t work out.  Gabriel Cramer lived in the 18th 

century, so he didn’t have a graphing calculator.  He came up with a clever way to solve systems 

of linear equations by just using determinants.  Cramer’s rule uses a simple method, which is 

appreciated by a lot of students who are not allowed to use calculators for their exams.  It also 

turned out to be very useful for solving other problems in advanced mathematics. 
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To use Cramer’s rule, first find the determinant of the coefficient matrix associated with the 

system.  Cramer’s rule works only if your system has a unique solution (the determinant of the 

coefficient matrix is not 0).  As an example, we will solve the system 

 x + 2y + z = 5 

2x + 2y + z = 6 

 x + 2y + 3z = 9 

Although there are only three unknowns here, I want to emphasize that Cramer’s Rule works 

for larger systems too.  (Because larger systems are much more tedious to solve with this 

method you will hopefully never see them in homework or on exams.)  We will call the 

coefficient matrix of the system “A”.  The determinant of A, |
1 2 1
2 2 1
1 2 3

|, works out to -4. 

Now we will solve for each unknown in turn.  To find the value of x, replace the first column of 

the coefficient matrix by the column on the right side of the equals sign, [
5
6
9
], so you get 

[
5 2 1
6 2 1
9 2 3

].  We will call this new matrix Ax because we replaced the coefficients of x.  It is also 

often called A1, because the variables used for larger systems are x1, x2, x3, x4, etc. instead of 

just x, y and z.  Now find the determinant of this new matrix, which is also -4.  To get x divide 

the determinant of the new matrix by the determinant of the original matrix: 

x = 
det(Ax)

det(A)
 = 

−4

−4
 = 1 

To find the next unknown, y, we replace the coefficients of y by [
5
6
9
], to get the new matrix Ay, 

which looks like this:  [
1 5 1
2 6 1
1 9 3

].  y =  
det(Ay)

det(A)
 = -4.  

The last unknown, z, is equal to 
det(Az)

det(A)
 , where Az is obtained by replacing the coefficients of z 

by [
5
6
9
].  The determinant of Az,  |

1 2 5
2 2 6
1 2 9

| is -8.  z = 
−8

−4
 = 2 

______________________________________________________________________________ 
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A Closer Look at Cramer’s Rule 

This explanation uses a principle that you may not be familiar with, so we will consider it 

separately.  Imagine that you have a stack of ten square crackers.  If you move each cracker 

very slightly to one side, you will have a slanted stack of crackers that is the same height as the 

original stack.  It is relatively easy to imagine that the volume of each stack is the same, because 

the amount of food is unchanged.  However, it may be more difficult to see that the area of the 

sides is also unchanged.  Consider the following image: 

 

 

The area of strip ABCD is the same as the area of strip BCEF.  To see that this is true, you can 

visualize the colored area as being made up of triangle ABE and strip BCEF.  However, you can 

also see it as a combination of strip ABCD and triangle DCF.  Triangle ABE and triangle DCF are 

the same size, so the two strips must have the same area. 

Cramer’s Rule can be derived using the principles of matrix and linear algebra, but it can also be 

shown to be true geometrically.  Here we will consider a geometric proof for the simple case of 

a linear system with two equations, but the geometry also works in three dimensions and even 

beyond.  Here is a random system of two linear equations: 
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2x + 4y = 10 

6x + 1y = 13.5 

The determinant of the coefficient matrix involves two vectors,  [
2
6
] and [

4
1
].  The system could 

be considered as a linear combination of these two vectors: 

x[
2

6
] + y[

4

1
] = [

10
13.5

]. 

Here the vectors are multiplied by x and y, which are just numbers. 

As we saw before, the absolute value of the determinant of the coefficient matrix, [
2 4
6 1

] is the 

area of the parallelogram determined by [
2
6
] and [

4
1
]: 

 

 

The area of the parallelogram determined by x[
2
6
] and [

4
1
] has to be x times larger since one of 

the sides has been multiplied by x.  (x is actually 2, and you can see for yourself that the area is 

in fact twice as big.) 
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This area represents x ∙ det (A).   Now we need to draw the vector [
10

13.5
] , which is equal to  

x[
2

6
] + y[

4

1
].  Adding two vectors is simple, because a vector is just a 2 x 1 matrix.  Matrices are 

added by simply adding their entries.  For example, If you add the vectors [
3
11

] and [
2
4
], you 

would get the vector [ 5
15

].  You could also think of this as the vector [
3
11

] taking you 3 units to 

the right and 11 units up.  The vector [
2
4
] would then take you two additional units to the right 

and another 4 units up.  The next image shows the vector [
10

13.5
], created by adding x[

2

6
] and 

y[
4

1
]: 
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You can see from this picture that it should be possible to find x and y geometrically, but it 

actually takes a clever trick to do it properly.   

The matrix Ax is [
10 4

13.5 1
], because we replaced the first column by the numbers found to the 

right of the equals sign.  The determinant pf Ax represents the area of the parallelogram defined 

by [
10

13.5
] and [

4

1
].  This area is marked “det(Ax)” in the image below.   
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Here you can see that x ∙ det(A) = det(Ax).  Therefore, x = 
det(Ax)

det(A)
, and a similar argument would 

show that y = 
det(Ay)

det(A)
. 

 

Identity Matrices 

If we think of the coordinates (x,y) as the vector [
x
y] (or the 2 x 1 matrix [

x
y]), then the new 

vector [
x′
y′

] that results from a transformation would be obtained by multiplying the original 
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vector by the transformation matrix: 

  [
x′
y′

] = [
a b
c d

] ∙  [
x
y] =  [

ax + by
cx + dy

]  

Again, notice the order in which this multiplication occurs. 

If we follow the first transformation with a second one, the second vector [
x"
y"

] is obtained by 

multiplying [
e f
g h

] ∙ [
a b
c d

] ∙ [
x
y]. 

Matrix multiplication is associative, so you can either multiply the first two matrices first, or the 

last two first.  Either way you get  

[
x"
y"

] = [
(ae + cf)x + (be + df)y
(ag + ch)x + (bg + dh)y

] 

 

We can also multiply a vector [
x
y] by the identity matrix, [

1 0
0 1

].  This does not change the 

original vector at all:   [
1 0
0 1

] [
x
y] = [

1x + 0y
0x + 1y

] = [
x
y]. 

In fact, any suitably sized matrix may be pre-multiplied, and also post-multiplied if possible, by 

an identity matrix, and it will not change.  Matrices are usually represented by a capital letter, 

and the identity matrix is represented by the letter I.  We can write that A ∙ I = A, and I ∙ A = A 

Larger identity matrices also exist, like  [
1 0 0
0 1 0
0 0 1

].  Here we are adding an additional 

dimension.  We can pre-multiply the vector [
x
y
z
] by this larger identity matrix, and it will not 

change.  Identity matrices are always square, which means that they have the same number of 

rows as columns. 

 

Inverse Matrices 

 

Many square matrices have an “inverse”, A-1, such that A-1A = I , and also AA-1 = I. 

Inverse matrices can be used to solve a system of equations.  Suppose we have a system of 2 

equations like this: 
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2x + 3y = 13 

  x + 2y = 8 

We can represent this system by a matrix equation as follows: 

[
2 3
1 2

] [
x
y] = [

13
8

] 

If we were to pre-multiply both sides of the equation by the inverse of [
2 3
1 2

], we would get: 

[
1 0
0 1

] [
x
y] = (𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 [

2 3
1 2

]) [
13
8

] 

The system of equations then turns into  

1x + 0y = …. 

0x + 1y = …. 

and the values for x and y can simply be read directly from the equations.  This gives us a 

relatively easy way to solve a system of equations. 

Note that not every matrix has an inverse.  In particular, if your system of equations does not 

have a solution you can be sure that the associated matrix does not have an inverse.  That 

makes sense, because if there was an inverse matrix we should be able to use it to get a 

solution.  Matrices that do not have an inverse are called singular matrices. 

There is an interesting way to find the inverse of a matrix.  Since we know that A-1A = I, we can 

write the matrix A next to the matrix I, and manipulate both of them at the same time until we 

manage to turn A into I.  At that point, we know that we have multiplied A by A-1 through our 

manipulations, and we have done the same to I.  Since A-1I = A-1 , the inverse matrix will 

automatically appear where I used to be.  In our example, we would write: 










1021

0132

 

Multiply the second row by 2 and subtract it from the first row: 

[
0 −1
1 2

|
1 −2
0 1

]  

Reverse the top and bottom rows: 

[
1 2
0 −1

|
0 1
1 −2

]  
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Multiply the bottom row by 2 and add it to the top row: 

[
1 0
0 −1

|
2 −3
1 −2

]  

Multiply the bottom row by -1: 

[
1 0
0 1

|
2 −3

−1 2
]  

The inverse matrix we want is now on the right side of the separation line in the augmented 

matrix.  

Pre-multiply both sides of the equation by the inverse matrix: 

[
2 −3

−1 2
] [

2 3
1 2

] [
𝑥
𝑦] =  [

2 −3
−1 2

] [
13
8

] 

 

On the right side multiplying the matrix by its inverse gives the identity matrix.  The left side 

works out to:  [
2 −3

−1 2
] [

13
8

] = [
26 − 24

−13 + 16
]= [

2
3
]. 

 

The net result is [
1 0
0 1

] [
x
y]= [

2
3
], which says that  

1x + 0y = 2 

0x + 1y = 3 

Inverse matrices are easy to obtain using a graphing calculator, however these calculators will 

also solve a system of equations for you directly if you just put it into an augmented matrix and 

ask for the reduced-row-echelon form.  

When the determinant of a matrix is 0, it does not have an inverse.  It is impossible to 

manipulate such a matrix to change it into an identity matrix.  If a system has no unique 

solution it makes sense that the coefficient matrix should not have an inverse, otherwise we 

should be able to solve it by using that inverse.  A system of linear equations does not have a 

unique solution if the determinant of its coefficient matrix is 0. 

If the determinant is not zero, and the numbers on the left side of the equation are all zero, 

then the only solution is a zero value for all the variables. 

As an example, let’s look at 
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2x – 4y = 0 

3x + 2y = 0 

The coefficient matrix of this system, which we will call A, does not have a zero determinant.  

That means that there is an inverse.  As a result, you can solve the system using A-1 as follows: 

A-1A[
x
y] = A-1[

0
0
], so I[

x
y] = [

0
0
] or [

1 0
0 1

] [
x
y] = [

0
0
] 

This says that  1x + 0y = 0 

  0x + 1y = 0 

and you can see that x = 0, y = 0 is the only solution for this system.  Being able to find the 

determinant lets you figure this out.   

______________________________________________________________________________ 

 

As we saw previously, a system of equations can just be solved without using an inverse matrix.  

A more interesting application of inverse matrices is in encryption.  The data you want to 

encrypt is placed into a matrix A, which is then pre-multiplied by some random matrix B.  The 

result is a new matrix BA.  The data are now hopelessly difficult to recover for someone who 

does not know what matrix was used for the multiplication.  However, you provide the person 

you are sending the data to with the inverse of matrix B.  Then they can pre-multiply the matrix 

they receive by B-1 and recover the original data.  The calculation is B-1BA = IA = A.   A very 

simple example would be encrypting the word “base” by using a = 1, b = 2 etc.  We can place 

this into a matrix as [
2 19
1 5

].  Pre-multiply that by the non-singular matrix [
2 3
1 2

], to get 

[
2 3
1 2

] [
2 19
1 5

], which is [
7 53
4 29

] .   This is the encrypted matrix that you would send.  Now 

pre-multiply the encrypted data by the inverse of [
2 3
1 2

], which we saw earlier is [
2 −3

−1 2
]: 

 

[
2 −3

−1 2
] [

7 53
4 29

] = [
14 − 12 106 − 873
−7 + 8 −53 + 58

] = [
2 19
1 5

].  The word “base” has been recovered. 

(See http://aix1.uottawa.ca/~jkhoury/cryptography.htm).  

 

Solving Systems with an Infinite Number of Solutions 

 

Let’s go back to the system we considered in the last section: 

http://aix1.uottawa.ca/~jkhoury/cryptography.htm
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2x + 3y = 10 

4x + 6y = 20 

Since the determinant of the associated matrix is 0, there is no unique solution.  If we multiply 

the first row by 2 and subtract it from the second row, we get  

2x + 3y = 10 

0x + 0y = 0 

If the square coefficient matrix of a system can be reduced to one that has a row of zeros, its 

determinant must be 0 since the system can’t have a unique solution.  There are infinitely many 

solutions, but “Infinitely many solutions” does not seem like a good answer to the matrix people.   

After all, you can’t just put in any solution here, such as x = 2 and y = 10.  There may be infinitely 

many solutions but they are still specific ones.  Therefore you may be asked to specify what kind 

of solutions you are talking about.  Pick an answer for x, preferably the standard one which is α, 

and express the other variables in terms of α if possible.  If that is not possible, use β for the next 

variable that you cannot express in terms of α.  Then use γ if necessary, and so on.  In this 

particular case we should select α for x, and then solve for y:  2α + 3y = 10.  y = (10 - 2α)/3 so y = 

-2/3 α + 10/3.  We can write our answer as a set of points (α, -2/3α + 10/3), or as a vector  

[
α

−2/3 α +  10/3]. 

The previous system of linear equations can be written as a matrix times a vector that equals 

another vector, like this: 

[
2 3
4 6

] [
x
y]= [

10
20

] 

The unknown vector can be expressed as [
x
y] or for larger systems, [

x
y
z
].  Vectors however are not 

limited to three dimensions.  We can multiply an appropriately sized matrix by an unknown 

vector x, expressed like this: 

[
 
 
 
x1

x2

x3
x4

…]
 
 
 

.  Consider the following example: 

- x1 + x2 – x3 + 3x4 = 0 

3x1 + x2 – x3  –  x4 = 0 

2x1 – x2 – 2x3 – x4 = 0 

This is an underdetermined system, and the associated matrix is not square (it would be square if 
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we added a row of zeros, and in that case the determinant would be 0).  We already know there 

is no unique solution.  This system can be manipulated until it simplifies to: 

x1 – x4 = 0 

x2 + x4 = 0 

x3 – x4 = 0 

To write the solution we set x1 = α.  This leads us to the conclusion that x4 = α, x2 = -α, and x3 = α.  

We can express this solution as a vector: 

[

α
−α
α
α

] . 

 

 

Statistics 

The Normal Curve and Z-Scores 

 

The standard normal curve has a mean of zero, a standard deviation of 1, and the area 

underneath it is equal to 1.  The function that draws the standard normal curve is considered a 

probability density function, because the area under the curve represents the probability that 

the random variable x will be greater than or less than a particular value, or in between two 

stated values.  The equation that produces the graph of the standard normal curve is: 

y = 
1

√2π
 e−

1

2
x2

 , where x is a normal random variable. 

The reason that I am providing you with this rather complex equation is that you should probably 

see for yourself what secret this curve is hiding.  Just use a graphing program to draw it, and you 

will find that it actually is much shorter and wider than its usual pictures suggest.  It would make 

sense that it is not very tall, because the area under the curve must be equal to 1. 
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Trigonometry 

 

Summary 

 

tan x = 
sin x

cos x
       cotan x = 

cos x

sin x
        sec x = 

1

cos x
       csc x = 

1

sin x
 

 

Important Identities:    sin2x + cos2x = 1      tan2x + 1 = sec2x          1 + cot2x = csc2x 

Even-Odd Identities 

sin (-x) = – sin x          cos (-x) = cos (x)     tan(-x) = - tan x 

 

Range of Inverse Trigonometric Functions 

Arcsin  - π/2 to π/2 radians  (-90° to 90°) 

Arccosec - π/2 to π/2 radians 

Arccos    0 to π radians   (0° to 180°) 

Arcsec    0 to π radians 

Arctan  - π/2 to π/2 radians, not including the endpoints (-90° to 90°) 

Arccotan - π/2 to π/2 radians, not including 0, OR 0 to π radians, excluding the endpoints. 

 

Cofunction Formulas 

cos x = sin (900 – x)        sin x = cos (900 – x) 

cot x = tan (900 – x)       tan x = cot (900 – x) 

csc x = sec (900 – x)        sec x = csc (900 – x)   

   

 

Law of cosines:  c2 = a2 + b2 – 2ab cos C 

Law of sines:  
sinA

a
 = 

sinB

b
 =  

sinC

c
 

sin (α + β) = sin α cos β + cos α sin β    sin(2x) = 2 sin x cos x 

sin (α – β) = sin α cos β – cos α sin β    

cos (α + β) = cos α cos β – sin α sin β 
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cos (α – β) = cos α cos β + sin α sin β 

      

cos(2x) = cos2x – sin2x              or    cos(2x) = cos2x – (1 – cos2x) 

              = 1 – sin2x – sin2x                              = 2 cos2x – 1            

              = 1 – 2sin2x                                          

sin2x = 
1−cos (2x)

2
    sin (

x

2
) = ±√

1−cos x

2
      sin2x = 1 – cos2x = (1 + cos x)(1 – cos x) 

cos2x = 
1+cos (2x)

2
    cos (

x

2
) = ±√

1+cos x

2
 

tan(x + y) = 
tan x + tan y

1−tan x tan y
                 

tan (
x

2
) = 

sin x

1+cos x
    or     tan (

x

2
) = 

1−cos x

sin x
 

 

Heron’s Formula for the area of a triangle:  A = √s(s − a)(s − b)(s − c), where s is the 

semiperimeter of the triangle.  s = 
a+b+c

2
 

To model a change with a sine (or cosine) function, it is helpful to change the period to 1 first by 

multiplying x by 2π.  Then lengthen the period by dividing by what you need, like 365 days.                                                     

 

(Additional trigonometry resources:  www.themathpage.com, and www.intmath.com ) 

 

 

If you play around with circles long enough you will eventually discover the idea of angles.  First 

there is a whole circle.  Then there is a half-circle, a quarter- circle, and so on.  Angles are a way 

to divide up a circle into measured parts.  Dividing a circle into 360 degrees was a really good 

idea.  The number 360 is naturally very “divisible”, giving nice whole number angle 

measurements for 1/3 of a circle, 1/4, 1/5, 1/6, 1/8, 1/9, 1/10, 1/12 and more.  This is a nice 

simple way to understand angles, and this is how students first learn about them. 

The other way to measure out parts of a circle is to relate them to the radius of the circle.  This 

reflects our deeper understanding of the relationship between the radius of a circle, its 

circumference, and angles.  To really understand this yourself, you need to actually work with a 

http://www.themathpage.com/
http://www.intmath.com/
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circle.  Get some paper, a compass, and some thin string.  If you do not have a compass, trace a 

circular object like a plate.  The diameter of your circle is the largest distance across the circle.  

Use a ruler to find that, and then mark the center of the circle in the middle of the diameter.   

Once you have drawn a large circle, use a string to measure out the radius.  Mark your string 

and lay it around the circumference of the circle.  This is an angle of one radian.   

 
 

Here one radius is shown in green, and the string along the circumference is colored in red.   

The red string is the same length as the radius.  Because you know that the circumference of a 

circle is 2πr, you can imagine that we can put 2π copies of the red string around the edge of the 

circle.  That is not a whole number.  The circumference of the circle is 6 times the radius and a 

bit more.  6.283185…… radii fit around the circle, so there are that many radians in a circle.  We 

usually just say that there are 2π radians, and 2π radians are equivalent to 360 degrees.  That of 

course means that 180 degrees = π radians.  Convert like this:  1 radian times  
180 degrees

π radians
  is 

about 57.3 degrees.  Look at the picture of a radian again:  one radian is a little smaller than a 

60 degree angle.  

In trigonometry you can work with either radians or degrees.  Just make sure your calculator is 

set to the right mode!!  Always check this if you get an unexpected answer from your 

calculator.  The TI 84 has a MODE button; just press it and adjust between degrees and radians. 
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After people had played around with angles for a long time, they started to wonder about 

chords.  These are lines that you draw from one point on the circle to another.  Here is a chord 

(marked in red) associated with a specific angle: 

 

 

 

 

How long is the chord?  Well, that depends on the angle, but of course also on the size of the 

circle.  So, if you want to explore the relationship between the angle and the chord you should 

pick a fixed size for your circle.  A convenient size would be to give the circle a radius of 1.  “One 

what?” you might ask.  Fortunately that doesn’t really matter.  It could be 1 inch, 1 centimeter, 

or even 1 yard.  We just say that the circle has a radius of 1 unit.  Once we have decided on the 

size, we can look at different angles and see how long their chords are.  The first one is obvious:  

an angle of 0 degrees has a chord of length 0.   

The next one is rather simple too:  an angle of 180 degrees has an associated chord of 2 times 

the radius, or 2 units in our case, as shown below. 



257 
 

 

 

 

 

The length of the chord associated with an angle of 60 degrees is not too difficult to find if you 

remember your geometry.  Look at the picture below to see that the angle and the chord form 

a triangle.  The triangle must be isosceles since two of the sides are radii of the same circle.  

That means that the angles that are not labeled in the picture must both be equal.  Because we 

already have a 60 degree angle, these angles have to both be 60 degrees so that the angles of 

the triangle will add up to 180 degrees.  If all the angles are equal the triangle must be 

equilateral (all sides are equal).  The length of the chord is 1 unit: 
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Using the Pythagorean Theorem, you can quickly find the chord length for a 90 degree angle.  

Since the chord is the hypotenuse for the 90 degree triangle, we find c by using a2 + b2 = c2   or  

12 + 12 = c2: 
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Eventually people make things more efficient and more standardized.  Notice that I drew all of 

these angles facing to the right, because that eventually became the standard.  Also, instead of 

working with chords mathematicians started working with half-chords that eventually came to 

be called sines (apparently due to a mistake in translating the Arabic word for “half-chord”).  

Correspondingly, mathematicians also considered only half the angle.  This picture shows the 

half-chord, or the sine, of 45 degrees (π/4 radians): 

 

 

 

Looking at things this way allows us to introduce a second measurement; the cosine: 
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Here the solid red line shows the sine of 30 degrees, and the green line shows the cosine.  The 

red line and the green line intersect at a right angle.  We can still calculate the distances from 

the original chord picture using the dashed lines.  The solid red line has a length of ½.  Using the 

Pythagorean Theorem, we see that the sine 2 + the cosine 2  = 1, or  (1/2)2 + cosine 2 = 1.  This 

means that the cosine of a 30 degree angle is the square root of ¾, or √3/2. 

Because the radius of the unit circle is 1, the relationship between the sine and the cosine is 

always “sine 2 + cosine 2 = 1”.  The sine and cosine depend on an angle, so we should write this 

important trigonometric identity as:   

sine2x + cosine2x = 1  

This says that (the sine of angle x)2 + (the cosine of angle x)2 = 1.  If you know the sine of any 

angle you can calculate the cosine, and vice versa.  The convention is to write sine as sin, and 

sin2x rather than (sine x)2, simply because it is easier. 

It didn’t take long for someone to take the triangle made up of the sine, the cosine and the 

radius, and lift it right out of the unit circle: 
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Notice that the angle at the bottom right corner of this triangle is a 90 degree angle, making 

this a right triangle.  Knowing the sine and cosine of various angles is useful for finding the 

length of the sides of a right triangle (sometimes students will mistakenly apply the same 

techniques to other types of triangles, with predictably poor results).  Of course not all right 

triangles have a hypotenuse of 1, so we may have to enlarge our picture a little: 

 

Now we have a triangle with a hypotenuse of 3.  The sides have been correspondingly enlarged 

to be 3 times the sine of 30 degrees, and 3 times the cosine of 30 degrees.  This leads us to the 

idea that in any right triangle, the sine and cosine can be found by dividing the sides by the 

length of the hypotenuse.  The sine of 30 degrees is the side opposite the angle divided by the 
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hypotenuse, and the cosine is the side adjacent to the angle divided by the hypotenuse.  Tables 

listing the value of the sine and cosine for different angles were created a very long time ago, 

and today we can get these values from a calculator.  (Windows:  All Programs -> Accessories-> 

Calculator -> View -> Scientific.)  Sine and cosine are usually abbreviated as sin and cos.  We 

have already calculated the sine and cosine of 30 degrees, so for this triangle we can say that 

the red side has a length of 3 ∙ ½ = 1.5, and the green side has a length of 3 ∙ √3/2, which is 

about 2.6. 

The sine of an angle is equal to the cosine of the complementary angle.  In the image below, x 

and y are complementary angles (x + y = 90o): 

 

The sine of angle x is the opposite side, a, divided by the hypotenuse.  The cosine of angle x is 

side b divided by the hypotenuse.  That works the opposite way for angle y.   

sin x = cos y and cos x = sin y 

Because y = 90o – x  and x = 900 – y, we can write 

sin x = cos (90o – x)    and    cos x = sin (90o – x) 

 

Another measurement that came from the unit circle is the tangent.  At first this was an actual 

tangent (a tangent is a line that touches a curve at exactly one point).  In the picture below, a 

line has been drawn tangent to the unit circle.  “The tangent” of 30 degrees is defined as the 

length of the orange line segment.  That length is determined by extending the top line of the 

angle outside of the circle, to form a secant line (a secant is a line that cuts through a curve).     
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First consider the larger triangle with the orange line as one of its sides.  The bottom side of the 

triangle is a radius of the circle, so its length is 1.  We could say that the orange line divided by 

the bottom side is the tangent ÷ 1 = the tangent.  Now consider the smaller triangle with the 

red side and the green side.  Because its angles are the same as the angles of the larger triangle, 

we can say that the red side ÷ the green side = the tangent ÷ 1.  That means that the sine ÷ the 

cosine = the tangent.  If you are working with a right-angled triangle rather than in the unit 

circle, you can find the tangent by dividing the side opposite the angle by the side adjacent to 

the angle.  This gives you the same ratio as sine/cosine.  Because this is a ratio, the length of the 

hypotenuse doesn’t matter at all.  Your calculator will supply you with the value of the tangent 

(abbreviated as tan) of different angles, and you can use these values to figure out the lengths 

of the sides of various right triangles when some measurements are given. 
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For this right triangle we can use the tangent to find the length of side BC, given that AB is 7 

units, and the angle at A is 45 degrees.  Don’t rush to grab your calculator to find the tangent of 

45 degrees.  Instead, draw a 45 degree angle in a unit circle, and figure out the values of the 

sine and the cosine.  Then you will know what the tangent is.  After you find the length of side 

BC, you could use the Pythagorean Theorem to determine the length of AC, but you should also 

try using the sine or cosine.  [Tangent of 45° = 
BC

AB
 , sine of 45° = 

BC

AC
 , and cosine of 45° = 

AB

AC
] 

Right triangles are not always drawn in this same convenient position with the known angle in 

the bottom left corner.  I used to turn the paper to adjust them, but I can’t do that so easily on 

my computer.  Here is where it might help you to use the mnemonic “SOHCAHTOA”.  You’ll 

have to say that out loud a few times to remember it.  It stands for Sine is Opposite ÷ 

Hypotenuse, Cosine is Adjacent ÷ Hypotenuse, Tangent is Opposite ÷ Adjacent.  Opposite 

means the side opposite the angle.  The adjacent side is the one touching the angle. 
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The next advance in trigonometry was the addition of coordinate axes to the unit circle.  This 

allows us to consider the sine and cosine values of angles larger than 90 degrees.  The sine is 

now defined as the distance along the y-axis, and the cosine is the distance along the x-axis.  

Because we are placing the center of the unit circle at the origin of the coordinate system, the 

values of the sine and cosine will vary from -1 to 1.  This is an important fact to note.  Sine and 

cosine values are never greater than 1 or smaller than -1.  The tangent however can have any 

value from negative to positive infinity. 

 

 

 

 

Here the sine values of a 30° angle and a 150° angle are measured along the y-axis, so you can 

see that the sine of both these angles is the same.  Supplementary angles (two angles that add 

to 180 degrees) always have the same sine values.  If the angle is larger than 180° the sine value 

becomes negative. 

Negative angles are measured clockwise from the x-axis.  Notice that the cosine of an angle is 

the same as that of the negative angle, while the sine of an angle is opposite to that of the 

negative angle: 
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cos x = cos (-x)     and     sin x = sin (-x) 

 

 

The next picture shows the important points on the unit circle, in radians.  You should be able 

to reproduce this picture by yourself.  The points in the 4th quadrant are often referred to as 

negative (clockwise) angle values to avoid more awkward fractions, but it is fine to use positive 

angle values instead.  For each of the indicated angle values you should be able to calculate the 

sine, cosine and tangent by hand.  Use a calculator to check if you are right (convert the radians 

to degrees, or set your calculator to radians).  Note that as angle values get larger we just keep 

going around the circle.  The point labeled 0 is the same as 2π, and π/2 is the same point as  

2.5 π.  There are an infinite number of ways to represent each point. 
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This illustration shows a sample calculation for the sine and cosine of π/3 or 60°: 
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I can see that the two blue lines are both radii of the unit circle, so their length is 1.  I have 

drawn an extra line to complete the isosceles triangle.  The two remaining angles must be 

identical because they are the base angles of a sideways isosceles triangle.  Since all the angles 

are 60 degrees all of the sides have the same length and the triangle is equilateral.  The dashed 

line divides it into two identical parts.  The height of the dashed line represents the sine of 60 

degrees, and it intersects the x-axis at the value of the cosine, which is exactly 1/2.  Once we 

know the cosine value, we use the Pythagorean Theorem to find the height of the dashed line: 

a2 + b2 = c2 , so (
1

2
)
2

 + b2 = 12 

1

4
 + b2 = 1, so b2 = 

3

4
  and b = √

3

4
 = 

√3

√4
 = 

√3

2
 

Once you have calculated all the important sine and cosine values you can create nice graphs.  

In fact, the unit circle itself is a graph of the cosine vs. the sine.  At each point on the unit circle 

the x value is the cosine and the y value is the sine.  The unit circle is rarely talked about as a 

graph because it is not a function (there are two different y values for almost every x value).  

Instead of graphing y against x, we can graph both the sine and the cosine against different 

angle values.  This creates graphs that actually represent functions.  Before you draw such 

graphs, consider that we created the unit circle setup by using radians.  The values of the sine 

and cosine vary between 1 radius of the unit circle in the negative direction to 1 radius in the 
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positive direction.  The angle units that go with these radius measures are radians.  Using graph 

paper, graph the angle in radians against the value of the sine.  Do not use degrees as a scale, 

since it would not be meaningful to graph a sine value of 1 unit on the y-axis against a degree 

value of 90 units along the x-axis.  You should be able to create a fairly accurate copy of the 

graph below by yourself. 

  

 

 

This graph shows that the sine value goes from 0 to 1 and back to 0 as the angle goes from 0 to 

π radians in the unit circle.  As the angle continues to increase the sine value becomes negative, 

and then goes back to zero at an angle of 2π.  After that the same process repeats endlessly as 

we go around the unit circle again and again.  Repeating functions like this are called periodic 

functions.  The sine function has a period of 2π.  The negative values along the x-axis represent 

angles as we go around the unit circle in a clockwise direction rather than counterclockwise. 
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Here the red line shows the cosine function.  You should also create your own copy of this on 

graph paper.   

You can see that the sine and cosine functions just differ by a horizontal shift.  Shift the sine 

function 
π

2
 units to the left to get the cosine: 

sin (x + 
π

2
 ) = cos x   

Or shift the cosine function 
π

2
 units to the right to get the sine function: 

cos (x – 
π

2
 ) = sin x 

 

 

The following interesting picture shows the tangent function.  The vertical lines are vertical 

asymptotes, which occur at points where the cosine is 0.  Since the tangent is the sine divided 

by the cosine, it cannot exist at these points, but it gets larger and larger in either a positive or 

negative direction as it approaches them.  The tangent function repeats, with a period of π.  

Make sure you understand why the tangent function has the shape and the period that it does 

by calculating sample values of the tangent at various points. 
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Inverse Trigonometric Functions 

 

If we have an angle of π/6 radians (30 degrees), we can figure out that the sine is ½.  The 

inverse sine function takes the value of the sine, and gives us the angle.  The inverse sine 

function is called the arcsine, and it is often written, confusingly, as sin-1x.  This does not mean 
1

sin x
. 

If we know that the sine of an angle is 1, we might guess that the angle is π/2 radians.  

However, it could also be 
5π

2
 radians (450°), or 

9π

2
 radians, or ….  The possibilities are endless 

because the sine function repeats endlessly.  An inverse sine function can only be created by 

taking a portion of the sine curve that is small enough that it does not return multiple angles for 
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a given value of sin (x).  The part that is used for this purpose is the portion of the sine curve 

between - π/2 and π/2 radians (-90° to 90°).  This may seem a bit hard to remember, but just 

think about what part of the unit circle you would choose if you were in charge.  You have to 

allow for the full range of values of the sine, which is from -1 to 1.  You could start that at π/2 

and go to 
3𝜋

2
 radians, but chances are that you’d leave it right where it is now just to avoid all 

those awkward fractions in between.  As a result the inverse sine function, known as the 

arcsine function, will always return angles between - π/2 and π/2 radians.  Any sine value is a 

valid input for this function (recall that the sine is always between -1 and 1, so don’t try to put 

in other numbers!). 

In the same way mathematicians have defined an inverse cosine function, which returns angles 

between 0 and π radians.  Again the input had to be between -1 and 1, so the most convenient 

interval to choose was 0 to π radians.  This allows for the full range of values of the cosine, and 

returns one unique angle for each one.   

If you look at the tangent function, you can see that over the interval - π/2 to π/2 radians the 

tangent goes from its minimum value (-infinity) to its maximum value (+infinity).  Here again 

there are other intervals you could choose, but - π/2 to π/2 is the most convenient one.  The 

arctangent function gives you angles between - π/2 and π/2 radians for any tangent value you 

enter.   

 

Range of Inverse Trigonometric Functions: 

Arcsin  - π/2 to π/2 radians  (-90° to 90°) 

Arccos    0 to π radians (0° to 180°) 

Arctan  - π/2 to π/2 radians (-90° to 90°, not including the endpoints)  

 

Whenever you use the inverse trigonometric functions and get a “wrong” angle, remember that 

the angle you want may not be in the range of the function.  Look for another angle that has 

the same sine, cosine or tangent value!   

If you take the output of a particular function and then apply the inverse of that function, you 

will get your original input back.  For example, the inverse of y = 3x is y = 
x

3
.  If I take the number 

5 and stick it into the function y = 3x, I will get 15.  If I then take that output and put it into the 

inverse function, y = 
x

3
, I get my original number back.  Things work the same for trigonometric 

functions and their inverses, within certain limits.  The sine of 
π

2
 is 1.  When you plug 1 into the 
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inverse sine function, you get 
π

2
 back.  We can abbreviate that as  

sin-1(sin(
π

2
)) = 

π

2
, or arcsin(sin(

π

2
)) = 

π

2
.  This says that the inverse sine of the sine of 

π

2
 is 

π

2
.  In 

the same way, sin(sin-1(1)) = 1.  Just check it out on your calculator.  Be careful not to enter a 

value that is outside the domain of an inverse function, or the result will be undefined.  For 

example, cos(arcos(2)) is undefined because the cosine is always between -1 and 1.  You cannot 

enter 2 as an input for the inverse cosine function.  If you are outside the range of an inverse 

trigonometric function, you will get a different angle value than what you would expect.  For 

example, tan-1(tan(2π)) = 0, because 2π is not within the range of the arctan function. 

 

Sometimes you may be given a value of the arcsine, arccosine or arctangent and asked to 

calculate another trigonometric value for the corresponding angle.  Such problems look like 

this: 

tan(arcsin (√3/2)) = ? 

To solve problems like this quickly, draw a right-angled triangle using the known values as the 

sides.  We know that the sine can be found by dividing the side opposite to the angle by the 

length of the hypotenuse, so we choose √3 for the opposite side and 2 for the hypotenuse.  

Now the arcsin function should return the angle x marked in the picture below:

 
We could just as well have set the length of the hypotenuse at 1 and the length of the opposite 
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side at √3/2, but doing things this way makes our calculations easier.  We can quickly use the 

Pythagorean Theorem to find the length of the adjacent side, which is √22−√3
2
 = √4 − 3 =1.  

The picture then shows us that the tangent of angle x is 
√3

1
, since the tangent is the opposite 

side divided by the adjacent side.  tan (arcsin (√3/2)) = √3. 

For some practice, show that sin (arccos 
√2

2
) = 

√2

2
. 

 

 

Secant, Cosecant, and Cotangent 

 

The inverse trigonometric functions are often written as sin-1, cos-1, and tan-1.  This does not 

mean 1/sin, 1/cos and 1/tan, which refer to the cosecant, the secant, and the cotangent 

respectively.  What I find the most confusing here is that  
1

sin x
  is called the cosecant, while  

1

cosx
  

is the secant.  The cotangent is easier to remember:  tan x =  
sin x

cosx
, and cot x = 

cosx

sinx 
.  Apparently 

these inverse trigonometric ratios were once used to simplify calculations, but unfortunately 

they have failed to disappear with the advent of calculators and computers.  You can do 

conversions using the cofunction formulas: 

cos x = sin (900 – x)       sin x = cos (900 – x) 

cot x = tan (900 – x)       tan x = cot (900 – x) 

csc x = sec (900 – x)        sec x = csc (900 – x)     

Note that 900 – x in degrees  is the same as 
π

2
 – x for radians. 

These formulas work because the sine of an angle is equal to the cosine of the complementary 

angle.  In the image below, x and y are complementary angles (x + y = 90o): 
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The sine of angle x is the opposite side, a, divided by the hypotenuse.  The cosine of angle x is 

side b divided by the hypotenuse.  That works the other way for angle y:  The sine of angle y is 

side b divided by the hypotenuse, and the cosine of y is side a divided by the hypotenuse:  

sin x = cos y, and cos x = sin y 

x is the complementary angle of y, and since x + y = 900, x = 900 – y. 

 

 

Earlier, we looked at the important trigonometric identity sin2x + cos2x = 1, which is just the 

result of applying the Pythagorean Theorem.  We can create another important identity from 

this by dividing both sides by cos2: 

sin2x

cos2x
 + 

cos2x

cos2x
 = 

1

cos2x
 

tan2x + 1 = 
1

cos2x
 

tan2x + 1 = sec2x 

 

Interestingly, the secant has a specific representation in our picture that shows the sine, cosine 

and tangent: 
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The purple line is the secant.  You can use similar triangles to show that 
1

cos
 in the smaller 

triangle corresponds to  
sec

1
  in the larger triangle.  The hypotenuse of the smaller triangle is the 

radius of the unit circle, so its length is 1 unit:   
1

cos x
 = 

sec x

1
 .   This is why the secant is defined 

as 
1

cosine
.  If you apply the Pythagorean Theorem you can see that tan2x + 1 = sec2x.   

 

Here is a picture showing the cotangent in orange and the cosecant as a pink line.  The two 30 

degree angles are alternate interior angles. 
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The cosine divided by the sine in the smaller triangle corresponds to the cotangent divided by 1 

in the larger triangle.  1 divided by the sine in the small triangle corresponds to the cosecant 

divided by 1 in the large triangle, so the cosecant is 
1

cosine
. 

A third trigonometric identity can be created by dividing both sides of sin2x + cos2x = 1 by sin2x: 

sin2x

sin2x
 + 

cos2x

sin2x
 = 

1

sin2x
 

1 + cotan2x = 
1

sin2x
 

1 + cotan2x = cosec2x 

Again, this identity can be derived directly from the picture above by applying the Pythagorean 

Theorem.  

 

There are of course also inverse functions for the secant, cosecant and cotangent (sigh).  Luckily 

they have (mostly) the same range as their corresponding inverse functions: 

Range of Inverse Trigonometric Functions: 

Arcsine  - π/2 to π/2 radians  (-90° to 90°) 

Arccosecant - π/2 to π/2 radians, not including 0 radians where the sine is zero. 

 

Arccosine  0 to π radians    (0° to 180°) 

Arcsecant  0 to π radians, not including π/2 where the cosine is zero. 

 

Arctangent - π/2 to π/2 radians, not including the endpoints (-90° to 90°) 

Arccotangent - π/2 to π/2 radians, not including 0, OR 0 to π radians, excluding the endpoints. 

 

 

The Law of Cosines 

 

The Pythagorean Theorem and trigonometric ratios help you find missing measurements of 

right triangles.  Unfortunately the Pythagorean Theorem only works for right triangles.  If there 
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is no right angle in your triangle, you need to extend the theorem to deal with that situation.  

The extended Pythagorean Theorem is called the Law of Cosines. 

Recall from geometry that once you draw two sides of a triangle the third side is already 

determined, since there is now only one way to complete it.  This is expressed in the SAS 

Theorem:  if two triangles have two sides that are the same length, and the angles between 

those sides are the same, the two triangles must be congruent.  In the picture below, imagine 

that we know side a, side b, and the angle between them at point C.  This means that side c has 

a specific fixed length, and we want to find it.  We can use the Pythagorean Theorem and 

trigonometric ratios to do so. 

You should note in the picture below that the convention is to label the sides so that they 

correspond to the angle opposite them.  This makes sense, since the length of the side is 

dependent on the size of the opposite angle and vice versa. 

 

 

Side c is the side of the triangle opposite point C.  We are going to find an expression for the 

length of side c.  The smart thing to do is to draw an altitude of the triangle (dotted line) so that 

c becomes the hypotenuse of a right triangle.  Then we can just use the Pythagorean Theorem 

to find the length of c.  All we need is the length of the other two sides, and we can use 
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trigonometric ratios to find those.  Consider the angle at point C.  The sine of angle C is the 

altitude divided by a, so the dotted line must have length a sin C.  By the same reasoning you 

can see that the segment labeled a cos C divided by a actually represents the cosine of angle C.  

We can divide side b into two segments:  a cos C, and b minus a cos C.  Applying the 

Pythagorean Theorem we get: 

c2 = (b – a cos C)2 + (a sin C)2 

      = b2 – 2ab cos C + (a cos C)2 + (a sin C)2 

      = b2 – 2ab cos C + a2(cos C)2 + a2 (sin C)2 

(cos C)2 is normally written as cos2C and (sin C)2 is written as sin2C: 

c2 = b2 – 2ab cos C + a2 (cos2C + sin2C)     

 

Since cos2C + sin2C = 1, we can simplify this to 

c2 = a2 + b2 – 2ab cos C 

 

This is the Law of Cosines.  The unknown side is c, and the rest of the formula refers to the 

other two sides and the angle between them.  When angle C is 90°, cos C is 0 and the Law of 

Cosines becomes the Pythagorean Theorem. 

If you really want to understand the Law of Cosines, you should draw your own copy of the 

triangle and find the formula for determining the length of side a or b when the other two sides 

are known.  The answers you should get are: 

a2 = b2 + c2 – 2bc cos A 

b 2 = a2 + c2 – 2ac cos B 

Notice that in each case it is the angle between the two known sides that appears in the 

formula (SAS congruence).  When all of the sides of a triangle are known, the triangle is also 

completely determined (SSS congruence).  Using the Law of Cosines, we can determine the 

angles of a triangle if we know the lengths of all three sides. 

 

Here is a different view of the Law of Cosines, showing that it works just as well for an obtuse 

triangle: 
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For the angle supplementary to angle C, the sine is equal to sin C, and the cosine is equal to  

– cos C. 

c2 = (a sin C)2 + (b + - a cos C)2 

    = a2 sin2C + b2 – 2ab cos C + a2 cos2C 

    = a2 (sin2C + cos2C) + b2 – 2ab cos C 

    = a2 + b2 – 2ab cos C 

 

The Law of Sines 

The Law of Sines provides another convenient way to deal with triangles that don’t contain a 

right angle. 
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sin A =  
h

c
  , so h = c sin A     sin B = 

k

c
 ,  so k = c sin B 

sin C = 
h

a
 ,  so h = a sin C     sin C = 

k

b
 ,  so k = b sin C 

c sin A = h = a sin C      c sin B = k = b sin C 

c sin A = a sin C       c sin B = b sin C 

sinA

a
 = 

sinC

c
          

sinB

b
 =  

sinC

c
 

    
sinA

a
 = 

sinB

b
 =  

sinC

c
 

 

The Law of Sines also works for obtuse triangles.  Here the angle labeled D is supplementary to 

angle B, so the sine value of angle D is the same as that of angle B: 
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sin A = 
k

c
 , so k = c sin A    sin B = 

h

c
  since sin B = sin D, so h = c sin B 

sin C = 
k

a
 , so k = a sin C    sin C = 

h

b
 , so h = b sin C 

c sin A = a sin C     c sin B = b sin C 

sinA

a
 = 

sinC

c
      

sinB

b
 = 

sinC

c
 

 

 

Although the Law of Sines seems straightforward, you may have some difficulties when you use 

it to determine the size of an obtuse angle in a triangle.  It still works for obtuse triangles, but 

the problem is that angles in the second quadrant share sine values with angles in the first 

quadrant.  The inverse sine function is set to only give you angles from -90 degrees to + 90 

degrees.  Therefore you will not be able to get an answer of an obtuse angle using the law of 

sines with the inverse sine function.  You’ll get an angle that has the desired sine value, but it is 

not the right one!  By now you may not remember much geometry, but there is (fortunately for 

teachers) no ASS congruence.  If one angle and two sides of a triangle are known, and the angle 

is not between the two known sides, the triangle is not necessarily determined.  If the known 

angle is acute, there can be two possibilities for the actual shape of the triangle.  One of those 
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possibilities corresponds to the sine value for the obtuse angle, while the other one has an 

acute angle with the same sine value.  Shown below are two triangles with sides of 7 and 8, and 

a known angle of 50o (rounded values).  To distinguish between these two possibilities, your 

problem may specify either angle C or the length of the remaining side.  If you’re not careful 

with the Law of Sines while trying to find the measure of angle B, you will get the left triangle 

when the actual triangle may be the one on the right. 

 

 

 

 

To avoid this problem, look in advance for the largest angle in the triangle.  The largest angle is 

always opposite the longest side.  Then solve for the smaller angles first.  Because a triangle can 

only have one obtuse angle, it is always possible to leave it till last. 

 

 

Trigonometric  Identities 

 

There are an awful lot of these things, and some teachers expect you to memorize most of the 

significant ones.   If you are lucky you get to use a formula sheet for tests, so you can get away 

with just memorizing a few.  Why memorize any at all, you may wonder.  Well, knowing just a 
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few of the crucial ones will help you get your work done a lot faster.  We have already seen 

three major identities: 

1.  sin2x + cos2x = 1 

This is the most important trig identity, and it can be found easily by applying the Pythagorean 

Theorem to the unit circle.  It says that (the sine of angle x)2  plus (the cosine of angle x)2 must 

equal 1.    

Dividing both sides by cos2x, we get 

2.  tan2x + 1 = sec2x 

We can also divide by sin2x to get 

3.  1 + cot2x = csc2x 

 

Now we will use the Law of Cosines to derive another important identity.  This trick, probably 

discovered after some trial and error, provides an alternate expression for the cosine of angle x 

plus angle y.  Because the cosine function is not a straight line, you cannot find the cosine of say 

50 degrees by taking the sum of the cosine of 30 degrees and the cosine of 20 degrees.  That 

last part may seem a bit obvious now, but take note of it because it is easy to forget when 

you’re up to your ears in sines and cosines of various unknown angles. 

cos (x + y) = cos x cos y – sin x sin y 

Unfortunately, this identity must be derived from the cosine of angle (x – y).  The picture below 

shows  angle x and angle y drawn in the unit circle. 
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Point A is the terminal point of angle x, so its coordinates are (cos x, sin x), and point B is the 

terminal point of angle y with coordinates (cos y, sin y).  If you consider triangle ABC, you will 

see that the angle at C is (x – y).  Triangle ABC has no right angles, so we cannot use the 

Pythagorean Theorem.  However, we can use the law of cosines:  c2 = a2 + b2 – 2ab cos C. 

Because we are working in the unit circle, the length of a and b is 1: 

c2 = 12 + 12 – 2∙1∙1∙ cos(x – y) 

c2 = 2 – 2 cos(x – y) 

This gives one expression for the length of c.  However, because we have the coordinates of 

point A and point B we can also use the distance formula (Pythagorean Theorem) to calculate 

c2: 

c2 = (sin x – sin y)2 + (cos y – cos x)2 

c2 = sin2x – 2sinx∙siny + sin2y + cos2y – 2cosy∙cosx + cos2x 

c2 = sin2x + cos2x + sin2y + cos2y - 2sinx siny - 2cosx cosy 

As we saw before, sin2x + cos2x is equal to 1, and so is sin2y + cos2y: 
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c2 = 1 + 1 – 2sinx siny – 2cos x cosy 

c2 = 2 - 2sinx sin y – 2cos x cos y 

However, we just figured out that c2 is also equal to 2 – 2 cos(x – y).  Therefore: 

2 – 2 cos(x – y) = 2 – 2sin x sin y – 2cos x cos y  

– 2 cos(x – y) = - 2sin x sin y – 2cos x cos y 

Dividing both sides by -2, we get   

cos(x – y) = sin x sin y + cos x cos y 

That’s nice, but we’d rather have an expression for cos(x + y).  To change that, we can insert (-y) 

into the formula: 

cos(x –(-y)) = sin x sin(-y) + cos x cos(-y) 

cos(x + y) = sin x sin(-y) + cos x cos(-y) 

Fortunately, there is some symmetry here.  The cosine of y is always equal to the cosine of –y.  

Just look at the unit circle to see that it is so.  The sine of y is equal in distance but opposite in 

value to the sine of –y:  sin –y = - sin y.  Now we can get the formula we want: 

cos(x + y) = -sin x sin y + cos x cos y 

cos(x + y) = cos x cos y – sin x sin y 

Once mathematicians had this formula, they wanted a similar one for sin(x + y).  Here it would 

help to look back at the graph that showed how the sine and cosine are related.  Hopefully you 

verified that sin x = cos (
π

2
− x) and cos x = sin(

π

2
− x), or maybe you should do that now.   

Using this fact we can say that cos (x + y) = sin (
π

2
− (x + y)) = sin (

π

2
− x − y), and so we can  

change part of our cosine addition formula: 

cos(x + y) = cos x cos y – sin x sin y 

sin(
π

2
− x − y) = sin(

π

2
− x)cos y – sin x sin y 

Now, angle x is some arbitrary unknown angle.  
π

2
− x is also an arbitrary unknown angle.  Let’s 

call it z for a moment, so we don’t get confused: 

sin(z – y) = sin z cos y – sin x sin y 
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Hmm, this close, but one bit that still contains x:  sin x.  We already know that sin x =  

cos (
π

2
− x), and we say that 

π

2
− x = z so we can replace sin x with cos z: 

sin(z – y) = sin z cos y – cos z sin y 

The letter z is not as commonly used for variables as x, so let’s change z to x: 

sin(x – y ) = sin x cos y – cos x sin y 

Oops, that worked out wrong because we would prefer a formula for sin(x + y).  Well, we can 

just change it as we did before, by substituting -y for y: 

sin(x – (-y)) = sin x cos (-y) – cos x sin (-y) 

Looking at the unit circle, we find that while cos (-y) = cos y, sin (-y) is always -sin y: 

sin(x + y) = sin x cos y – cos x ∙ - sin y 

sin(x + y) = sin x cos y + cos x sin y 

 

Together, cos(x + y) = cos x cos y – sin x sin y and sin(x + y) = sin x cos y + cos x sin y are known 

as the angle addition formulas. 

These useful formulas are even more helpful when angle x = angle y.  Just put x = y to translate 

the above formulas into the following: 

sin (2x) = 2 sin x cos x 

cos (2x) = cos2x – sin2x 

There are times when it is awkward to deal with the square of a sine or cosine function, 

especially in calculus.  Mathematicians have rearranged that last formula to help them get rid of 

such squared functions without getting an annoying square root: 

cos (2x) = cos2x – sin2x   cos (2x) = cos2x – sin2x 

cos2x = cos (2x) + sin2x   sin2x = cos2x – cos (2x) 

cos2x = cos (2x) + 1 – cos2x   sin2x = 1 – sin2x – cos (2x) 

2 cos2x = 1 + cos (2x)    2 sin2x = 1 – cos (2x) 
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cos 2x = 
𝟏+𝐜𝐨𝐬 (𝟐𝐱)

𝟐
    sin 2x = 

𝟏−𝐜𝐨𝐬 (𝟐𝐱)

𝟐
 

Once you have these formulas, you can replace x with x/2 to derive the half-angle formulas: 

cos 
𝐱

𝟐
 = ±√

𝟏+𝐜𝐨𝐬 𝐱

𝟐
    sin 

𝐱

𝟐
 = ±√

𝟏−𝐜𝐨𝐬 𝐱

𝟐
 

 

Although it is not commonly used, there is also a tangent addition formula: 

tan (x + y) = 
sin (x+y)

cos (x+y)
 

tan(x + y) = 
sinx cosy+cosx siny

cosx cosy−sinx siny
 

Divide both the top and the bottom of this fraction by cosx cosy: 

tan(x + y) = 

sinx cosy+cosx siny

cosx cosy

cosx cosy−sinx siny

cosx cosy

 = 

sinx cosy

cosx cosy
+

cosx siny

cosxcos y

cosx cosy

cosx cosy
−

sinx siny

cosxcos y

 

tan(x + y) = 

sin x 

cos  x
∙
cos y

cos y
+

cos x 

cos  x
∙
sin y

cos y

cos x cos y

cos xcos y
−

sin x 

cos x
∙
sin  y

cosy

 

tan(x + y) = 
𝐭𝐚𝐧 𝐱+𝐭𝐚𝐧𝐲

𝟏−𝐭𝐚𝐧 𝐱 𝐭𝐚𝐧 𝐲
 

 

Here is the only problem I have encountered that actually creates a use for the angle addition 

formula for the tangent: 

For the following figure, E is a point that moves along line DC.  Find x when the angle between a 

and b is 60 degrees as shown. 
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When the angle is 60 degrees as required, angles a and b add up to 120 degrees.  Since the 

tangent of 120 degrees is -1.732, we can say that tan(a + b) = -1.732.  However, tan(a + b) is not 

tan(a) + tan(b).  The tangent addition formula tells us that tan(a + b) = 
tan(𝑎)+tan (𝑏)

1−tan(𝑎)tan (𝑏)
. 

Reading from the figure, we find that tan(a) = 10/x, and tan (b) = 4/(8 – x).   

tan(𝑎)+tan (𝑏)

1−tan(𝑎)tan (𝑏)
  =  

10

x
+ 

4

8−x

1−(
10

x
)(

4

8−x
)
  = 

10(8−x)

x(8−x)
+ 

4x

x(8−x)

1−(
10

x
)(

4

8−x
)

  = 

80−10x+4x

8x−x2

1− 
40

8x− x2

  = 
80−6x

8x−x2

1(8x−x2)

8x− x2 − 
40

8x− x2

 = 

80−6x

8x−x2

8x−x2−40

8x− x2

  = 
80−6x

8x−x2 ∙ 
8x− x2

8x−x2−40
 = 

80−6x

8x−x2−40
. 

Since we know that the tangent we want is -1.732, we solve 
80−6x

−x2+ 8x −40
 = -1.732: 
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1.732x2 – 13.856x + 69.28 = 80 – 6x 

1.732x2 – 7.856x – 10.72 = 0 

By using the quadratic formula we can determine that the positive solution for x is 5.634. 

 

 

 

 

Trigonometric Equations 

 

Trigonometric equations may be presented to you in different ways.  You may be expected to 

solve an equation and come up with a specific value or set of values.  For example, if an 

equation specifies that 2 sin x = 1, that implies that we need to find one or more values for x 

that will make the equation true.  Find the set of angles for which sin x = ½.   

To actually solve for an angle, you need to look at whether there is a restriction on the possible 

values for the angle.  Most commonly such a restriction will involve values between 0 and 2π  

(0 to 360 degrees).   

 

Example 

sin x + cos x = 1.  Solve for x. 

In general, you want to have only a single trigonometric function in your equation.  You could 

convert the cosine to the sine by using the identity sin2x + cos2x = 1.  This means that cos x = 

±√1 − sin2x.  Substituting that into the equation gives: 

sin x  ± √1 − sin2x = 1 

To solve equations containing a square root, you should isolate the square root on one side and 

then square everything: 

±√1 − sin2x = 1 – sin x 

1 – sin2x = (1 – sin x)2 

1 – sin2x = 1 – 2 sin x + sin2x 
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– sin2x = – 2 sin x + sin2x 

0 = – 2 sin x + 2 sin2x 

If you can get to a point where there is a zero on one side, you can often solve the equation by 

factoring: 

0 = 2 sin2x – 2 sin x 

0 = 2 sin x(sin x – 1) 

0 = sin x(sin x – 1) 

Either sin x = 0 or sin x – 1 = 0.    

Because in this case we squared a quantity that could be either negative or positive, we have to 

check our answers in the original equation (which is always a good idea anyway).  If sin x = 0 

then the first angle in the unit circle where that happens is 0.  It happens again at π/2 radians or 

180 degrees, and every 180 degrees after that.  If you put x = 0 in the original equation, you get 

sin(0) + cos(0) = 1, which is in fact true because the cosine of 0 is 1.  On the other hand,  

sin(
π

2
) + cos(

π

2
) = -1.  At x = 2π, things work out again because the cosine is 1.  One way of 

writing this answer is x = 0 degrees + 2πn, where n is a positive or negative whole number, or 

zero.  If sin x – 1 = 0, then sin x must be equal to 1.  This happens at π/2 and every 360 degrees 

after that.  When the sine is equal to 1, the cosine is always 0, so there is no problem.  We could 

write that as x = 1 ± 2πn, where n is a positive whole number, or zero.  

 

Example 

cos(2x) = 
1

2
.  Solve for x if 0 ≤ x < 2π. 

Be careful about the period here.  The multiplication by 2 means that the period is now π 

instead of 2π, and cos(2x) will reach a value of ½ four times in the interval [0, 2π].  To find all of 

the values of x, double the length of the interval where you look for the angles:  

2x = 
π

3
 or 

5π

3
 or 

7π

3
 or 

11π

3
 

x =  
π

6
 or 

5π

6
 or 

7π

6
 or 

11π

6
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Example 

sin2x = sin x.  Solve for x if 0 ≤ x < 2π. 

Here you may be tempted to divide both sides of the equation by sin x, but remember that this 

is an unknown.  Make sure that an unknown quantity can’t be zero before you divide by it!  

Could sin x be zero in this case?  Yes, it can, and now we already have one solution.  So, 

sin x = 0, or 

sin2x

sin x
 = 

sin x

sin x
 

sin x = 1 

When sin x = 0, x is 0.  When sin x = 1, x = π/2. 

Another way of solving this problem, and avoiding a potential division by zero, is to move the 

parts with unknown to one side: 

sin2x = sin x 

sin2x – sin x = 0 

sin x(sin x – 1) = 0 

sin x = 0 or sin x – 1 = 0. 

Other times an equation is presented as a statement that needs to be proven by using 

trigonometric identities to change one of the sides until it is identical to the other.  We’ll look at 

strategies for doing that first, and then go on to find actual values of angles. 
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It can be quite overwhelming to attempt to prove complex trigonometric identity equations, 

but it helps to use a systematic approach.  First, find out if you are only supposed to change the 

left side of the equation, or if you are allowed to pick either side.  Usually you are not permitted 

to change both.  Here are some basic strategies to help you: 

1. Write everything in terms of only sin x and cos x, especially if that is all you see on the 

other side. 

2. Watch for the three obvious identities:   

sin2x + cos2x = 1           tan2x + 1 = sec2x           1 + cot2x = csc2x 

Try to rearrange things to take advantage of these identities. 

3. If the equation contains fractions, try putting everything over a common denominator 

so you have a single term under the division line.  Remember that to divide by a 

fraction, you multiply by the reciprocal.  For example: 
sin x−cosx

1− 
sinx

cosx

  =  
sin x−cosx
cosx

cosx
− 

sinx

cosx

  =  
sin x−cosx

 
cosx−sinx

cosx

  =  -(cos x – sin x) ∙ 
cos x

cos x−sin x
  = - cos x. 

4. Reduce the angles, using double angle and/or angle addition formulas.  If there is an 

uneven angle, like sin (3x), split it into sin (2x + x).  Note that this is not sin (2x) + sin (x)! 

5. Factor it if you can.  

6. sin2x = 1 – cos2x = (1 + cos x)(1 – cos x) 

7. If sin4x or cos4x are present, factor as a difference of two squares if possible.  sin4x – 1 = 

(sin2 x – 1)(sin2x + 1) = (sin x – 1)(sin x + 1)(sin2x + 1).  Otherwise, treat it as (sin2x)(sin2x) 

or (cos2x)(cos2x). 

8. If you see an expression like (1 – cos x) or (1 + sin x) in a fraction, try to multiply both the 

numerator and denominator by the complementary terms (1 + cos x) or (1 – sin x) to 

take advantage of the difference of two squares.  1 – cos2x changes to sin2x. 

9. If you have terms with sin x and cos x on one side, and only csc x and sec x on the side 

that you must keep the same, you can try changing things like this:  sin x = 
1
1

sinx

 = 
1

csc x
  

and cos x = 
1
1

cosx

 = 
1

sec x
 . 

10. Even if you are not allowed to change the right (or left) side of the equation, it may help 

to do so anyway and then work backwards to get the answer the proper way. 

 

Modeling Change with Sine (or Cosine) Functions 

 

You should follow along with the explanations in this section by using some kind of graphing 

software, like Math GV Function Plotting Software (free download at http://www.mathgv.com).  

http://www.mathgv.com/


294 
 

 

Select File -> New 2D Cartesian Graph, and then Graph ->New 2D Function.  You can use pi to 

represent π, and put the value of the sine in parentheses, like this: sin(2pi*x) or sin(2pi x).  Start 

with the basic sine function y = sin(x). 

 

Not only is the sine curve an interesting curve by itself, there are also many real events that can 

be described by this type of function because they go up and down periodically in the same way 

as the sine function.  We can model these events with a sine curve by stretching or squishing 

the curve horizontally and/or vertically, and shifting it to the right or left, or up and down.  This 

works just like you would do it with other functions.  It just looks scarier because of the sine 

notation.  One reason that educators like these problems is that they show horizontal stretches 

and compressions much better than those that don’t use trig functions. 

First, let’s move our sine function over a little.  The sine of 0 is 0, and while many events start 

out with a value of zero at time zero, some do not.  Suppose that we are modeling a process 

that starts out at its maximum value at time 0.  Our sine function has a maximum at π/2, so let’s 

shift the whole function over to the left to get the maximum value positioned at time zero.  To 

move a function to the left, we add something to x.  When you do that, you create a situation 

where a smaller x can do the same job that a bigger x did previously.   I can shift the whole 

curve π/2 units to the left by adding π/2 to x, like this:  f(x) = sin (x +
π

2
).  Now x can be 0 and 

still give the function a value of sin (
π

2
).  In fact, the entire curve has shifted to the left.  This 

makes it identical to the curve of the cosine function.  Your course may direct you to use the 

cosine function for modeling if the maximum is at time 0 or if you need to have the maximum 

at a specified value.  That is more efficient than starting with the sine function. 

Next, we will consider that our imaginary process has a period corresponding to 1 second.  

Seconds you say?  I thought we were working in radians, with stuff like 2π?  Although this 

situation would be potentially confusing, we are fortunately just graphing things on a piece of 

paper or on a computer screen.  We only need to have the function line up with simple “units” 

along the x-axis, and then we can call those units seconds, or hours, or inches or whatever is 

appropriate to the situation.  Right now we are calling the units radians, and one period of the 

function extends over 2π of them.  Let’s change that a little.  I am going to multiply x by 2π.  

This way, when the input is actually 1, the multiplication by 2π blows the value up to 2π.  Once 

that has happened, the sine function really doesn’t see the difference.  The function still does 

the same job, but it now can do that job with a scaled-down value of x.  As a result, our graph 

has become squished up in the horizontal direction by a factor of 2π.  The period is now 1 

instead of 2π.  Just graph y = sin(2πx) to see that.  When x is 0.5, 2πx is π so we are at the half-

way point in the period.  The entire period is 1 unit, and instead of radians we’ll label that 

seconds on our graph.  
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But wait, what about our shift to the left?   Well, because the function is already where we 

wanted it at x = 0 it won’t move away from that as it gets squished:  y = sin(2πx +
π

2
) still has a 

maximum value of sin 
π

2
 when x is zero.  The only thing that needs to be multiplied by 2π is x.  

But suppose you had started with the graph y = sin (2πx), and you wanted the maximum value 

at  

x = 0.  You would look at the period, which is now 1, and reason that a change of ¼ unit in x 

would be needed to shift the graph to the left.  Add ¼ directly to x to create the shift.  Graph y = 

sin (2π(x + ¼)).  You get a sine wave with a period of 1 that is shifted ¼ units to the left.   

2π(x + ¼) is the same as 2πx + π/2.  The function can be written as f(x) = sin (2πx + π/2), or as 

f(x) = sin (2π(x + ¼)).  This last form has the advantage of allowing you to read the actual 

magnitude of the shift directly.  The bottom line here is that whatever you want to change, do 

it directly to x, and you’ll get what you want. 

Once we have reached this point, it is a really a simple matter to stretch the period to have it 

occupy as many seconds as we want.  For example, if we want a period of 6 seconds we just 

divide the part with the x by 6.  If you graph y = sin (
2πx

6
+

π

2
), you’ll see that you get the 

desired result.  The actual magnitude of the shift can be seen by factoring out 
2π

6
 and rewriting 

the equation as y = sin (
2π

6
 (x + 

3

2
)).  Here we are using seconds, but the units are really arbitrary.    

y = sin (
2π

365
x) would nicely model a process that starts at zero and has a period of 365 days.   

y = sin (
2π

365
x + 

π

2
) will give you a maximum at zero and a period of 365 days.  If you need to 

shift either of these equations, just add or subtract the required values directly to or from x. 

Problems in your course may ask you to determine the frequency.  In physics, the frequency is 

thought of as how many waves go by a given point per second, or some other unit of time.  

Suppose that a wave completes a full cycle in 0.1 second.  We say that the period is 0.1 second.  

The frequency is 10 waves per second.  If the period is 2 seconds, then only 0.5 waves go by 

every second.  The frequency is simply 1/the period. 

Well, that takes care of the horizontal adjustments.  The vertical changes we make are actually 

simpler to understand because they can be made as direct changes to the output.  If we want 

the output of the function f(x) = sin(x) to be 3 times as big, we just write f(x) = 3 sin(x).  This 

causes the value of the function to vary between -3 and 3 rather than between -1 and 1.  The 

function becomes stretched out in the vertical direction.  Shifting the entire function up or 

down is a simple matter of adding or subtracting the desired value.  If we wanted f(x) = 3 sin(x) 

to return only positive values, we just add 3 to the output, like this:  f(x) = 3 sin(x) + 3.  Now the 

value of the function will vary between 0 and 6 rather than between -3 and 3. 
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Instead of using the sine function, you could use the cosine function.  This is often convenient 

when a process has a maximum value at time zero, since that is where the cosine has its 

maximum.  

 

Graphing a Modified Trigonometric Function 

 

Example:  Graph y = 3 cos(
1

π
 x + 

1

π
) + 1 

1.  Make a sketch of the original cosine function. 

 
I chose to include a full period between - π/2 and 3π/2.  Notice that the length of the 

period is 2π, or about 6.28.  The green dots mark minimum and maximum values, and 

the zero points (points on the midline of the function). 

Location of green dots from left to right: 

(- 
π

2
 , 0)  (0, 1)  ( 

π

2
 , 0)  (π, -1)  ( 

3π

2
 , 0) 

 

2.  Look at the problem like this:  y = 3 ∙ (cosine of something) + 1. 

We know that the value of the cosine always goes from -1 to 1.  This means that 3 times 

the cosine has a range of -3 to 3.  The last part, + 1, says that 1 unit must be added to 

the output of the cosine function.  Now the output values of the function will range 

from -2 to 4.  Graph this using MathGV or another program as y = 3 cos(x) + 1 so you can 

see what it looks like: 

 



297 
 

 

 
 

Location of green dots from left to right: 

(- 
π

2
 , 1)  (0, 4)  ( 

π

2
 , 1)  (π, -2)  ( 

3π

2
 , 1) 

The midline of the function is now at y = 1. 

 

 

3.  Find the new period.  y = 3 cos(
1

π
 x + 

1

π
) + 1.  Ignore the other parts for a moment, and 

look only at cos(
1

π
 x).  When x = 0, the cosine function “sees” a value of zero and returns 

its maximum value.  For the cosine function to “see” a full input of 2π, x must be 2π2.  

The multiplication by 
1

π
 , which is the same as a division by π, caused the period to 

stretch by a factor of π.  The new period is 2π2, or about 19.7 radians.  y = 3 cos(
1

π
 x) + 1 

looks like this (notice that we have ignored the horizontal shift for the moment): 

 

 
 

Location of green dots (from left to right): 

(- 
 π2

2
 , 1)  (0, 4)  (

 π2

2
 , 1) (π2, -2)  (

3π2

2
 , 1) 
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4. Now we rewrite the equation so that we can quickly see the shift.  Factor out 
1

π
 to see 

that y = 3 cos(
1

π
 x + 

1

π
) + 1 is the same as y = 3 cos(

1

π
(x + 1)) + 1.   The graph of  

y = 3 cos(
1

π
 x) + 1 must be shifted 1 unit to the left: 

 

 
 

Location of green dots (from left to right): 

(- 
π2

2
 – 1, 1)  (-1, 4)  ( 

π2

2
− 1 , 1)  (π2 – 1, -2)        (

3π2

2
 – 1, 1) 

 

5. Convert to numbers so you can see that the dots are in the right place: 

(-5.93, 1)  (-1, 4)  (3.93, 1)  (8.87, -2)         (13.80, 1) 

 

 

Heron’s Formula 

You might remember from geometry that once you choose the length of all three sides of a 

triangle, you have completely determined that triangle.  The angles are now fixed, and so is the 

area.  As a result, you should be able to calculate the area of a triangle if the length of the sides 

are given.  People commonly use Heron’s Formula for this: 

A = √s(s − a)(s − b)(s − c), where s is the semiperimeter of the triangle.  s = 
a+b+c

2
 

Heron’s formula can be derived using the Pythagorean Theorem.  Take triangle ABC and draw 

an altitude h.   
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From the law of cosines, we know that c2 = a2 + b2 – 2ab cos C.  So, c2 – a2 – b2 = -2ab cos C, and 

cos C = 
c2−a2−b2

−2ab
.  The green line in the image above has length a cos C, which is equal to 

c2−a2−b2

−2b
.  We can use this expression in the Pythagorean Theorem.  h2 + (a cos C)2 = a2.  

Because we are interested in h, we’ll write that as h2 = a2 – (a cos C)2.  Substituting 
c2−a2−b2

−2b
 for 

a cos C gives h2 = a2 – (
c2−a2−b2

−2b
)
2

, which is the same as h2 = a2 – 
(c2−a2−b2)2

4b2
.  Since we need 

to take a square root here, it will be best to create a single fraction: h2 =  
4a2b2

4b2
 – 

(c2−a2−b2)2

4b2
 = 

4a2b2−(c2−a2−b2)2 

4b2
. 

That last expression is rather convenient because the denominator is a nice square.  Recall that 

we can take the square root of the numerator and the denominator separately: 

h = √
4a2b2−(c2−a2−b2)2 

4b2
 = 

√4a2b2−(c2−a2−b2)2

2b
 

The area of the square will be one-half the base times the height h.  The base in this example is 

b, so A = 
1

2
bh = 

1

2
 b ∙ 

√4a2b2−(c2−a2−b2)2

2b
 = 

√4a2b2−(c2−a2−b2)2

4
 

Although you could use this formula the way it is, Heron’s Formula looks much nicer.  To fix 

things up a bit, we can rewrite the top part of the fraction as the difference of two squares: 

A = 
√(2ab)2−(c2−a2−b2)2

4
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The difference of two squares can be factored [(a + b)2 = (a + b)(a – b)]: 

A = 
√(2ab+c2−a2−b2)(2ab−c2+a2+b2)

4
 

If you remember that (a + b)2 = a2 + 2ab + b2 and (a – b)2 = a2 – 2ab + b2, you can use that to  

write each of the two factors of the numerator as the difference of two squares: 

A = 
√−(−2ab−c2+a2+b2)(2ab−c2+a2+b2)

4
 

A = 
√−(a2−2ab+b2−c2)(a2+2ab+b2−c2)

4
 

A = 
√−((a−b)2−c2)((a+b)2−c2)

4
 

A = 
√−(a−b+c)(a−b−c)(a+b+c)(a+b−c)

4
 

A = 
√(a−b+c)(−a+b+c)(a+b+c)(a+b−c)

4
 

A = 
√(a−b+c)(−a+b+c)(a+b+c)(a+b−c)

4
 

A = 
√(p−2b)(p−2a)p(p−2c)

4
 , where p is the perimeter a + b + c 

A = 
√2s(2s−2a)(2s−2b)(2s−2c)

4
 

A = 
√2s∙2(s−a)∙2(s−b)∙2(s−c)

4
 = 

√16s(s−a)(s−b)(s−c)

√16
 = √

16s(s−a)(s−b)(s−c)

16
 

A = √s(s − a)(s − b)(s − c) 

 

 

Equations of the Form A sin x + B cos x 

 

Rearranging things into different forms is very important in math.  There are many instances 
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where rearranging equations allows us to simplify something or get a form that is suitable for a 

particular method.   

Let’s go back to the trigonometric identity sin(x + y) = sin x cos y + cos x sin y.  Once we select a 

specific value for y, cos y and sin y become fixed numbers.  I’ll pick an easy value, say 60° or 
π

3
, 

to illustrate this point.  I don’t have the sine and cosine of 
π

3
 memorized, but I can quickly draw 

a unit circle and figure out that sin 
π

3
 = √3/2 and cos 

π

3
 = 1/2 

sin(x + 
π

3
) = cos 

π

3
 sin x + sin 

π

3
 cos x 

sin(x + 
π

3
) = ½ sin x + √3/2 cos x 

In fact, for every value of y that I choose I can create such an equation.  If I choose the value n 

for y, it would look like this: 

sin(x + n) = A sin x + B cos x 

Here the number A represents cos y, and the number B is sin y.  Flip the equation around to get 

A sin x + B cos x = sin(x + n) 

However, the value that we choose for y represents an angle, not just a number.  The Greek 

letter phi, pronounced as either “fy” or “fee”, is commonly used for this purpose.  It is written 

as Ø:   

A sin x + B cos x = sin(x + Ø) 

This shows that we can take the sum of a sine function, and a cosine function (which is really 

just a modified sine function) and express it as a single sine function.  That is not very important 

to you and me, but folks in various engineering and physics fields actually have a use for this.  

Try it out for yourself by entering some functions into MathGV or your graphing calculator.  For 

example, you can use y = 3sin(x) + 4cos(x).  When you graph this you get a nice modified sine 

function.   

Also, sin(x + Ø) = A sin x + B cos x, which shows that you could decompose a single sine wave 

into two new modified sine waves.  If you were actually working with this equation you would 

not find it quite satisfactory because of the restrictions on the numbers A and B.  Since these 

numbers represent the sine and cosine of angle Ø they are restricted to values between  

-1 and 1.  Well at least we have negative values available, but they are inconveniently small.  

You can of course multiply the entire equation by something, like this: 
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5 sin(x + Ø) = 5A sin x + 5B cos x, which is fine in this direction but not so helpful when you’re 

working the other way.  Just look at 25 sin x + 14 cos x:  what was A and what was B??  Here our 

only reasonable option is to let 25 be A and 14 be B, and use some unknown multiplier C on the 

other side:  A sin x + B cos x = C sin(x + Ø).  Now A represents C cos Ø and B is C sin Ø.  That may 

seem complicated, but we can draw a simple picture showing angle Ø and its associated values:

 
Look at this picture carefully and verify that it is correct.  Now, since C cos Ø = A and C sin Ø = B: 

 

This is nice, because we can see right away that C = √A2 + B2.  So, instead of  

A sin x + B cos x = C sin(x + Ø) we can write A sin x + B cos x = √A2 + B2 sin(x + Ø).  That’s 

perfect.  Starting with the function y = 25 sin x + 14 cos x, we can change it into a single sine 

function like this: 
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25 sin x + 14 cos x = √252 + 142 sin(x + Ø) 

The specific angle Ø is easy to find, because we can see from the picture above that tan Ø = 
B

A
. 

If tan Ø = 
14

25
 = .56, then we can use the inverse tangent to find Ø.  After I remember to set my 

calculator to radians, I get a value for Ø of .5105 radians.  It is very important to use radians 

here rather than degrees because we are working with functions that we want to graph.  (Recall 

that using degrees instead of radians would produce a distorted graph that is not really 

meaningful.) 

25 sin x + 14 cos x = 28.65 sin(x + .5105) 

To check your work, graph both y = 25 sin x + 14 cos x and y = 28.65 sin(x + .5105).  Both 

functions will coincide exactly.  You will have to zoom out a fair bit since we picked such large 

numbers for A and B.  Try your own example with smaller numbers. 

Once you start using negative numbers for A, which represents C cos Ø, you will end up with an 

angle Ø outside the range of the inverse tangent function.  This is always something to watch 

for when using the inverse trigonometric functions.  In the case of the tangent your result will 

usually be off by π radians in a clockwise or counterclockwise direction.  For example, if A is 

negative and B is positive then you should look for the angle Ø in the second quadrant 

(between 
π

2
 and π radians), where the cosine is negative and the sine is positive. 

 

Complex Numbers 

In the section on imaginary numbers, we saw that the “size”, or modulus, of a complex number 

is its distance from the origin on the complex number plane: 
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This shows the modulus of the complex number z = 3 – 2i as a blue line.  The length of the blue 

line, according to the Pythagorean Theorem, is √32 + 22, which is √13.  |𝑧| = √13. 

Important mathematical discoveries were made by expressing complex numbers in 

trigonometric form, so of course you will be expected to be able to do that.  That is, you’ll be 

expected to convert long rows of numbers, not make mathematical discoveries.  It never seems 

to occur to anyone that students might want to do something original. 

The image above already contains a triangle, so you can just apply trigonometry to it.  If the 

blue line makes an angle θ with the origin, then tan θ = 
−2

3
, and θ = -33.69⁰.   The length of the 

green line would be  √13 cos θ, while the length of the red line is √13 sin θ.  We can therefore 

express the number z as √13(cos -33.69⁰ + i sin -33.69⁰), or as √13(cos 326.3⁰ + i sin 326.3⁰).  

The angle may be expressed in degrees or in radians. 

Complex numbers can be multiplied: 

 

Example 

Multiply 3 – 2i  [trig form √13(cos 326.3⁰ + i sin 326.3⁰)] by 4 + 3i [trig form 5(cos 36.87 + i sin 

36.87), and express the result in trigonometric form. 

 

(3 – 2i)(4 + 3i) = 12 + 9i – 8i – 6i2 = 12 + i + 6 = 18 + i 
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The modulus of this number is √182 + 12 = √325 = 5√13.  To find the associated angle, take 

the inverse tangent of 1/18, which is approximately 3.18 degrees.  This is the actual angle, since 

we are expecting that it will be in the first quadrant. 

In general, we could express two numbers in trigonometric form and then multiply: 

r1(cos a + i sin a) r2(cos b + i sin b) = r1r2(cos a cos b + i cos a sin b + i sin a cos b + i2sin a sin b) 

That can be simplified quite a bit: 

r1r2(cos a cos b + i2sin a sin b + i cos a sin b + i sin a cos b) 

r1r2(cos a cos b – sin a sin b + i (cos a sin b + sin a cos b)) 

Now use your trigonometric identities, cos (x + y) = cos x cos y – sin x sin y and sin(x + y) = sin x 

cos y + cos x sin y: 

r1r2(cos (a + b) + i sin (a + b)). 

We can use this to multiply 3 – 2i  [√13(cos 326.3⁰ + i sin 326.3⁰)] and 4 + 3i [5(cos 36.87⁰ +  

i sin 36.87⁰), to get 5√13(cos 363.18⁰ + i sin 363.18⁰) = 5√13(cos 3.18⁰ + i sin 3.18⁰). 

 

De Moivre’s Theorem:  Proof by Induction 

 

De Moivre’s Theorem states that (r(cos x + i sin x))n = rn (cos(nx) + i sin(nx)).  That makes sense 

since we just saw that you can multiply two complex numbers to get 

r1r2(cos(a + b) + i sin(a + b)).   

If both numbers are the same, that would give you r2(cos(2a) + i sin(2a).  So, the theorem is 

correct for n = 2.  But will things still work out for n = 3?  Hmm, I’d better try that to make sure.  

To save some time I can start with cos(2x) + i sin(2x) and multiply that by (cos x + i sin x): 

(cos(2x) + i sin(2x)) (cos x + i sin x) =  

cos(2x) cos(x) + i cos(x)sin(2x) + i sin(x)cos(2x) – sin(x)sin(2x) 

That result can be rearranged to take advantage of the angle addition formulas cos(x + y) = cos 

x cos y – sin x sin y  and sin(x + y) = sin x cos y + cos x sin y: 

cos(2x)cos(x) – sin(2x)sin(x) + i (sin(2x)cos(x) + cos(2x)sin(x))= cos(2x + x) + i sin(2x + x) 
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Well, it looks like (cos x + i sin x)3 is in fact equal to cos(3x) + i sin(3x).  At this point I would 

guess that the theorem works for n = 4, but I really don’t feel like going on.  And even if I did, all 

I would accomplish is to prove the theorem for a few specific cases out of an infinite total 

number.  While I would settle for “It’s definitely probably true,” mathematicians feel the need 

to prove everything.  A proof by induction can show that something is true not only for the first 

few cases, but on into infinity as n gets larger and larger.  Induction may feel like some kind of 

trick, so we should see how it works with something that is relatively simple. 

Example 

Prove that the sum of the first n numbers is given by the formula Sn =  
n

2
(1 + n). 

In the section on Series, we saw that you can add the first 100 numbers up very quickly by 

creating 50 pairs:  1 + 100, 2 + 99, 3 + 98, and so on.  All of these pairs add up to 101, so the 

sum of the first 100 numbers is 50 times 101.  In general, the sum of the first n numbers is  
n

2
(1 + n).  You can try that out for several values of n, and find that it always works.  Induction 

helps us to prove that Sn = 
n

2
(1 + n) by showing that if it is true for n is equal to some number k, 

it must also be true for k + 1.   Proof by induction usually starts by showing that a formula is 

true for n = 1: 

S1 = 
1

2
(1 + 1) = 1 

Next, assume that it is true for n = k:  Sk = 
k

2
(1 + k) 

Now we will show that if the formula is true for n = k, then it is also true for n = k + 1.  If you put 

the number k + 1 into the formula, you get 

Sk+1 =  
k+1

2
 (1 + (k + 1)) 

If the formula is correct, you should get the same result by simply adding the number (k + 1) to 

the sum of the first k numbers: 

Sk+1 =  
k

2
(1 + k) + (k + 1) 

So, 
k+1

2
 (1 + (k + 1)) should be equal to 

k

2
(1 + k) + (k + 1).  Let’s rearrange that a bit to see if it 

really is the same: 

k+1

2
 (1 + (k + 1)) = 

k

2
(1 + k) + (k + 1) 
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k+1

2
 (1 + (k + 1)) = 

k

2
 + 

k2

2
 + k + 1  

k+1

2
 (1 + (k + 1)) = 

k2

2
 + 

k

2
 + 

2k

2
 + 

2

2
  

k+1

2
 (1 + (k + 1)) = 

k2+ 3k + 2

2
 

k+1

2
 (1 + (k + 1)) = 

(k + 1)(k + 2)

2
 

k+1

2
 (1 + (k + 1)) = 

k + 1

2
 ∙ (k + 2) 

k+1

2
 (1 + (k + 1)) = 

k + 1

2
 ∙ (k + 1 + 1) 

This looks better if you only change one of the sides, but I actually got there by changing both 

sides until they looked equal.  Then I went back and did it this way. 

 

Although this may feel like you’ve been cheated somehow, it does work.  Just try it out with an 

incorrect formula like Sn = 
n

2
(n).  If that is true, Sk+1 should be equal to 

k

2
(k) + k + 1.  By directly 

filling in the formula for k + 1, you would get Sk+1 = 
k+1

2
 (k + 1).  Check these expressions to see 

that no amount of manipulation will make them equal to each other. 

Now, to get back to De Moivre’s Theorem.  As we said, it is obviously true for n = 1.  If it is 

actually true for n = k, then for n = k + 1: 

(r(cos x + i sin x))k+1 = rk(cos(kx) + i sin(kx)) ∙ r(cos x + i sin x) 

And, by filling in the formula directly: 

(r(cos x + i sin x))k+1 = rk+1(cos ((k+1)x) + i sin((k+1)x)) 

So, we need to show that  

rk(cos(kx) + i sin(kx)) ∙ r(cos x + i sin x) = rk+1(cos ((k+1)x) + i sin((k+1)x)) 

Just as we did for n = 3, we can multiply and rearrange the part on the left: 

rk+1(cos(kx) + i sin(kx))(cos x + i sin x) 

rk+1 on the left matches rk+1 on the right, so we won’t worry about that part. 
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cos(kx) cos x + i sin x cos(kx) + i sin(kx) cos x – sin(kx) sin x 

cos(kx) cos x – sin(kx) sin x + i (sin(kx) cos x + sin x cos(kx))  

Again use the angle addition formulas to get: 

cos(kx + x) + i sin(kx + x), which is equal to the part on the right, (cos ((k+1)x) + i sin((k+1)x)). 
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Parametric Equations 

Parametric equations can express both x and y as functions of a parameter.  Often that 

parameter is t, for time.   

The first time I had to graph parametric equations, I was confused.  Where was t supposed to 

go on the graph??  The answer to that is that it doesn’t have to go anywhere.  Let’s take a look 

at a set of parametric equations: 

x = t 

y = t2 

 

Or, if you are bothered by the simplicity of these equations, you can rewrite them in function 

notation:  x(t) = t and y(t) = t2.  At t = 0 both x and y are 0, so the first point on the graph is (0,0).  

When t = 1, x is 1 and y is 1, so we get the point (1,1).  Next we set t = 2 to obtain the point 

(2,4).  The next point is (3,9), etc.  You can either just graph this, or you can put some dots on 

your curve and write the corresponding value of t beside each point.  Some graphs also show 

arrows to indicate the direction in which the curve is traced out as time increases.  By using 

substitution, you can convert the parametric equations into an equation in rectangular 

coordinates.  If y = t2 and t = x, then y = x2.  You may want to take note of the fact that this 

conversion would seem a lot more complex if you use function notation. 

 

Example 

Graph       x(θ) = cos θ 

                  y(θ) = sin θ 

This set of parametric functions traces out a circle, in a counterclockwise direction.  θ is the 

parameter.  By converting this to a set of regular equations and using a clever substitution, you 

can show that it is the description of a circle with a radius of 1:  x2 + y2 = cos2θ + sin2θ = 1.  Still, 

you should probably actually graph this once to convince yourself that it is really true.  I would 

recommend graphing x(θ) = 10 cos θ and y(θ) = 10 sin θ instead so you have a bit more room to 

work. 
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When you express a set of parametric equations as a relation between x and y, be careful about 

the sine and cosine.  If you say that x = sin t, that means that x can only have values between -1 

and 1.  So, we can convert  

x = sin t 

y = sin2t 

to y = x2, but both y and x can only have values between -1 and 1. 

You will also be asked to convert regular functions to parametric equations.  If you want to 

express y as a function of x, it is usually best to just set x equal to t, or whatever parameter you 

are asked to use.  y = x3 turns into x = t, y = t3.  Sometimes you want x to start at a certain value, 

say 4.  In that case, let x = t + 4, so that it can be 4 at the starting time t = 0. 

 

Example 

A particle starts at the point (4, 2), and moves in a straight line to the point (8, 7) at a constant 

speed.  Write a set of parametric equations that describe this motion. 

The slope of the line segment traced out by the particle is rise/run, or (7 – 2)/(8 – 4), which 

equals 5/4.  Here you could use the expression y – y1 = m(x – x1).  Use the starting point, (4, 2) 

for (x1, y1):  y – 2 = 
5

4
 (x – 4).  So, y = 

5

4
 (x – 4) + 2.  That is just the equation of a line, and it 

doesn’t contain the information that we are starting at x = 4.  We have to specify that 4 ≤ x ≤ 8. 

Set x – 4 = t, so we can start t at zero, and write the parametric equations: 

x = t + 4 

y = 
5

4
 t + 2 

Specify that 0 ≤ t ≤ 4, so that x stays between 4 and 8.  If that doesn’t seem clear to you, just 

start with 4 ≤ x ≤ 8 and substitute for x:  4 ≤ t + 4 ≤ 8.  Then subtract 4 from all three parts. 

 

Falling Objects 

 

When Galileo used ramps to slow down the effects of gravity, he noticed that a ball that rolls 

down a ramp moves faster and faster.  Measuring carefully, he found that if the ramp was four 

times as long, the ball would only take twice as long to reach the bottom.  If the ramp would be 

9 times as long, the time to reach the bottom would increase by a factor of 3.  So, if an object 

falls for 3 seconds as opposed to 1 second, we would expect it to fall 9 times as far. 
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Because of this squared relationship between time and distance, motion influenced by gravity 

has the shape of a parabola.  You can see this even for a falling object when you graph its 

position against time.  Let’s see how that works. 

We know that speed = 
distance

time
, so distance = speed ∙ time.  Velocity is speed with direction, so 

in physics you will be using v to represent speed (and direction).  Distance may be represented 

by x for horizontal motion, by y for vertical motion, or generically by the letter s.  Distance 

traveled = velocity multiplied by the time. 

s = vt, plus some initial distance si which may be 0 if the motion starts at a given zero point: 

s = si + vt 

We also know that acceleration is velocity/time.  Acceleration measures how much faster the 

speed gets per unit of time, so it is usually measured in meters per second/second, or m/sec2. 

If a = 
v

t
, then v = at.   

Because the acceleration that we will consider in our physics problems will be constant, such as 

the acceleration produced by gravity, we can simply take the average speed when doing our 

position calculations.  The speed at the start of an interval is vi, and at the end of the interval it 

will be vi + at.  The final speed will often be denoted by vf. 

vf = vi + at 

As a result, the average speed over the entire interval is 
vi + vf

2
, which is  

vi+(vi+at)

2
, or vi + 

1

2
 at.  

Plug that in for v in the position equation, s = si + vt: 

s = si + (v)t 

s = si + (vi + 
1

2
 at)t 

s = si + vit + 
𝟏

𝟐
 at2  

Already you can see that this is a quadratic equation.  If you graph the position s against the 

time t, you’ll get a parabola as you would for any quadratic equation.  This equation will work 

for any motion that involves a constant acceleration produced by some force (Force = mass ∙ 

acceleration). 
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The acceleration due to gravity at the Earth’s surface is about 9.8 m/s2, or approximately 32 

feet/sec2.  We use the letter g to indicate acceleration due to gravity, and g is the positive 

quantity 9.8 m/s2.  Since this acceleration is directed downward people commonly use –g.  Here 

the motion is vertical, so we will use y for the distance: 

y = yi + vit –  
𝟏

𝟐
 gt2  

If you drop a ball from height h, how long will it take to hit the ground?  Well, h is the initial 

position, and the initial speed is zero.  When the ball hits the ground, its position s will be 0: 

0 = h + 0t –  
1

2
 gt2  

1

2
 gt2 = h 

t2 = 
2h

g
  so t = √

2h

g
 

It should not be necessary to memorize this, but you can use it to check your calculations when 

you are looking at specific examples. 

What is the impact velocity of the ball? 

The velocity after time t is given by v = vi + at, and vi = 0, while the acceleration a is equal to -g.  

t is √
2h

g
: 

v = -g  
√2h

√g
 = - √g √2h = - √2gh 

If an object is launched vertically with a speed vi, how long will it take before it hits the ground? 

y = vit –  
1

2
 gt2 + yi.  We will assume that we start on the ground, so yi = 0.   

y = vit –  
1

2
 gt2.  When the object hits the ground y = 0 

0 = vit –  
1

2
 gt2 

0 = (vi - 
1

2
 gt)t 

t = 0 or vi - 
1

2
 gt = 0.  vi = 

1

2
 gt, so t = 

2vi

g
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Interestingly, if you are standing at the edge of a cliff and throw a ball straight up with a velocity 

of, say 10 m/s, its impact velocity at the bottom of the cliff will be exactly the same as if you 

had thrown it straight down with a velocity of 10 m/s.  This does make sense, because throwing 

the ball up at 10 m/sec will cause it to be falling back down with a speed of 10 m/s when it is 

level with the edge of the cliff.  Although the impact velocity is the same, the time to impact is 

not.

 

The basic equations of motion can be rearranged to get a useful relationship between 

displacement, acceleration and velocity that does not involve time. 

vf = vi + at  →  at = vf – v0  →  t = 
vf−vi 

a
 

You could substitute that into s = si + vit + 
1

2
 at2, but that is a bit time-consuming because of the 

square.  Remember that vave = 
vf + vi

2
.  We can use the average speed because the acceleration 

will be constant.  We also know that s = si + vavet.  Substitute for vave and t to get: 

s = si + 
vf+vi

2
 ∙ 

vf−vi

a
 

s = si + 
𝐯𝐟

𝟐− 𝐯𝐢
𝟐

𝟐𝐚
   

This formula allows you to calculate the final position of an object if you know the initial 

position, the initial and final velocity, and the acceleration.  If you think about that, it does 

make sense that if you know those particular things you should be able to predict where the 

object will end up.  Notice that it makes no difference if vi is positive or negative.  If the object is 

going to fall, the acceleration will be negative and everything will work out correctly. 

 

Projectiles 

Force and velocity vectors that are at an angle from horizontal can be decomposed into 

horizontal and vertical components.  If an object is launched at angle θ with velocity v, the 

vertical component is |v|sin θ, and horizontal component of the velocity is |v|cos θ.  Here |v| 

represents the magnitude of the velocity vector. 

Each component of the velocity can be considered separately.  The vertical component is a 

parabola when graphed against time, and the steady horizontal velocity then creates a 

parabolic trajectory for the object. 
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The upward component of the velocity determines how long the object is in the air, and the 

horizontal component determines how far it travels horizontally during this time. 

First consider the vertical component of the motion.  vy, the initial vertical speed, is |v|sin θ.  

Because of the influence of gravity, the vertical speed will change constantly.   

y is 0 at the beginning and the end of the parabola.  0 = vyt – 
1

2
gt2. 

0 = (vy - 
1

2
 gt)t so t = 0 or vy - 

1

2
 gt = 0.  Solve that last equation for t to get t = 

2vy

g
.  The object is in 

the air for a total time of 
2v𝑦

g
. 

Maximum height occurs at t = 
vy

g
 (parabolas are symmetrical).  To find the actual height at this 

point insert this value for t into the position equation:  s = - 
1

2
 g (

v𝑦

g
)
2

+ 
vy

2

g
 = 

vy
2

2g
. 

Now look at the horizontal component.  The horizontal speed will stay constant (for practical 

purposes we will ignore air friction). 

To find how far the object travels in a horizontal direction, multiply the horizontal velocity by 

the total time the object is in the air: 

x = xi + vht     where vh is the horizontal component of the velocity. 

If you need the actual magnitude and direction of the impact velocity, consider the vertical and 

horizontal components of the velocity as perpendicular vectors.  You can use the Pythagorean 

Theorem to find the magnitude, and the inverse tangent to find the angle of the impact 

velocity. 
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Polar Coordinates 

Polar coordinates were already used in the time of the ancient Greeks, which means that this 

system is much older than the Cartesian coordinates you are familiar with.  Our regular x-y 

system sees a flat surface as an infinite square, and Cartesian coordinates are also referred to 

as rectangular coordinates.  However, you could also see a flat surface as an infinitely large 

circle.  This might be what you would do if you were trying to specify the positions of stars in 

the sky.  To use polar coordinates, all you need is a central point, kind of like the origin, and a 

polar axis from which to measure an angle.   

The free graphing software MathGV lets you experiment with polar graphs so you can learn to 

understand them better.  Go to File, and select New Polar Graph.  A window appears with many 

different axes.  If you want your graphs to look like the ones in your textbook, go to Graph → 

Graph Settings.  Highlight all of the settings on the axis list except for 0 degrees and delete 

them. 

To actually specify the location of a point, you need to provide the distance r of the point from 

the origin, and the angle between the polar axis and the line along which the point lies.  In the 

image below, you can see the point A located at a distance of 5 units from the origin as 

measured along a line that makes a 60 degree angle with the polar axis.   

   

The angle is always called θ.  We could also describe the point A as being located at a distance 

of -5 units from the origin, along a line that makes a -120 degree angle with the polar axis: 

http://www.mathgv.com/download.html
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In this way, you can describe any point on a plane.  Just as we place x before y in rectangular 

coordinates, we put r before θ in polar:  (r, θ).  Oddly enough however, polar graphs are usually 

in an r = …… format so that θ is the input of the function. 

 

Let’s look at some basic polar graphs: 

1.  r = 3.  The radius is always 3, but you can use any value for Ѳ: 
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Any equation of the form r = c creates a circle with its center at the origin. 

 

2.  Ѳ = 1.  The angle is constant at 1 radian, while the radius varies: 

 

 

When you specify only that Ѳ = 1, r can be any value.  That is similar to x = 1 in rectangular 

coordinates, which creates a line because y can have any value. 

The line extends below the polar axis due to negative values of r, not because the angle 

changes.  Ѳ = c  specifies a line that always passes through the polar origin.  Unfortunately 

though you can’t just move that line up or down by adding something as you would in a regular 

coordinate system. 

 

 

3.  r = Ѳ.  The radius is always equal to the size of the angle in radians, which results in a spiral: 
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Converting from polar to rectangular coordinates is not that difficult.  If you lay a regular 

coordinate system on top of the polar one, you can see that y = r sin Ѳ and 

x = r cos Ѳ: 
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So, the point (5, 
π

3
) can be translated by setting x = 5 cos 

π

3
 and y = 5 sin 

π

3
.  That gives you  

(2.5, 2.5√3) in Cartesian coordinates.  

Going the other way, from rectangular into polar, is just slightly more trouble. 

 

Example 

Change the point (-3, -4) from rectangular into polar coordinates. 

First, we have to calculate the value of r.  You can use the distance formula, which is really just 

the Pythagorean Theorem, to determine that r = √32 + 42 = 5.  Next, we need the angle.  Here 

is where you need to be careful.  In the picture above, you see that tan θ is just y/x.  Just make 

sure that you end up in the right quadrant with the correct angle in reference to the polar axis.  

Here y/x is -4/-3, or 
4

3
.  The inverse tangent of  

4

3
 is 53.13⁰, but because the point you want is in 

the third quadrant you need to measure out a negative distance along the line that makes a 

53.13 degree angle with the polar axis.  The coordinates you want are (-5, 53.13), which can of 

course be expressed in many different ways, such as (5, -126.87) or (5, 233.13⁰).  Fortunately, 

there are conversion calculators available online so you can check your work. 

 

We already saw that x = r cos θ and y = r sin θ.  By looking at the image above you can also see 

that r2 = x2 + y2.  This provides all the information you need to change polar equations into 

rectangular equations.   

 

Example 

Change the polar equation r = 6 to an equation in rectangular coordinates. 

If r = 6, then 62 = x2 + y2, so x2 + y2 = 36.  This equation describes a circle with a radius of 6.   

 

Example 

Change the polar equation θ = 
π

4
 into an equation in rectangular coordinates. 
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For this equation, just insert the values for x and y:  x = r cos 
π

4
, and y = r sin 

π

4
.  That translates 

to x = r 
√2

2
 and y = r 

√2

2
 .  A regular equation would look like y = something with x instead of  

y = r 
√2

2
.  The obvious thing to do is to replace r with something containing x.  We can get that 

something by rearranging x = r 
√2

2
 to r = 

x

√2

2

.  This means that y = 
√2

2
 ∙ 

x

√2

2

 or y = x.  Alternatively, 

you can say that 
y

x
 = 

r 
√2
2

r 
√2
2

  = 1.  If 
y

x
 = 1 then y = x.  The rectangular equation is y = x, which is a 

line with a slope of 1.  The inverse tangent of 1 is 
π

4
 radians.  The equation is correct because 

the slope of the line corresponds to θ = 
π

4
. 

 

Example 

Change the polar equation r = 5 sec θ into an equation in rectangular coordinates. 

You may find this easier if you rewrite the equation as r = 
5

cosθ
.  It may take a bit of thought, but 

eventually you would then think of multiplying both sides by cos θ to take advantage of the 

equation x = r cos θ.  If r cos θ = 5, then x = 5.  Use MathGV to graph the polar equation. 

 

Example 

Change the polar equation r = 4 cos θ into an equation in rectangular coordinates. 

Here it is advantageous to multiply both sides by r:  r2 = 4r cos θ.  That translates to x2 + y2 = 4x.  

Although this is a valid equation, your teacher would probably prefer that you change it to a 

proper conic section format by completing the square: 

x2 + y2 – 4x = 0 

x2 – 4x + y2 = 0 

x2 – 4x  + 4 + y2 = 4 

(x – 2)2 + y2 = 4 

This is a circle with center (2, 0) and a radius of 2.  Use MathGV to graph the polar equation. 
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Equations of the form r = a sin θ and r = a cos θ produce circles, but when we graph  

r = a sin (nθ) and r = a cos (nθ), where n is an integer, we get flower-like shapes called roses:   

  

Hmmm, that looks a bit more like a daisy to me.  Obviously no botanists were consulted when 

these shapes were named.  You can experiment in MathGV to see how to produce different 

kinds of roses.  

When we graph r = sin θ, we get a circle that sits just above the polar origin.  This happens 

because sin θ ranges from 1 to -1 in a nice orderly way.  In a sense we are reversing the process 

that created the sine wave from the circle.  Now look at r = 1 + sin θ.  Here r is never negative.  

The smallest value is 0, which pulls the graph to the polar origin at the bottom: 

 

In general, r = a + b sin θ and r = a + b cos θ generate lima-bean shaped curves called limaçons 

(pronounced as “lemahsons” ).  This name is actually derived from the Latin word for snail or 

slug, which is limax.   

 

If a is larger than b, the zero point is not reached so the curve shows a dimple that doesn’t 

reach the origin, or it just flattens a bit if the difference is large.  If b is larger than a there is a 

range of negative values which results in a small second loop that appears inside the first.  The 

limaçons with a sharp pinch (a = b as shown above) or an inside loop (b > a) are called cardioids 

because they resemble the shape of a heart.  Caustics are patterns formed when light is 

reflected by a curved surface.  When the surface is a perfect circle we may be able to see an 

actual mathematically correct cardioid.  For interesting images, search for “caustic optics”. 
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Polar Graph Shapes 

 

θ = a      A line that makes an angle of a radians with the polar axis 

 

r = a  A circle with radius a centered at the polar origin 

 

r = sin θ A circle with radius 1/2 and center at (1/2,π/2) 

 

r = a sin θ A circle with radius a/2, above the origin if a > 0, and below if a < 0 

 

r = cos θ A circle with radius 1/2 and center at (1/2,0) 

 

r = a cos θ A circle with radius a/2, right of the origin if a > 0 and left if a < 0 

 

r = a + b sin θ and r = a + b cos θ generate lima-bean shaped curves called limaçons.  Limaçons 

with a sharp pinch resemble the shape of a heart and are called cardioids. 

. 

 

r = a + b sin θ, where b > a A cardioid above the origin 

 

r = a – b sin θ, where b > a A cardioid below the origin 
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θ = some constant specifies a line that always passes through the polar origin.  Unfortunately 

though you can’t just move that line up or down by adding something as you would in a regular 

coordinate system. 

Horizontal and vertical lines can be easily translated from regular equations.  x = 5 turns into  

r cos θ = 5, so that r = 
5

cosθ
.  y = 5 turns into r = 

5

sinθ
. 

To create any line in polar coordinates we can translate from regular Cartesian coordinates.  

The equation of a line, y = mx + b, translates as r sin θ = m r cos θ + b.  Rearranging the equation 

to find r, we get r sin θ – m r cos θ = b , so r(sin θ – m cos θ) = b and 

r = 
b

sin(Ѳ) − m  cos (Ѳ)
, where m is the slope. 

 

Using this equation, you can draw any line.  It is not necessary for that line to go through the 

polar origin.  The polar axis intercept of a line occurs when θ = 0.  When that happens,  

r = –b/m, since sin θ will be 0 and cos θ will be 1.  –b/m is the polar axis intercept. 

 

 

 

Polar Equations of Conics 

 

 

 

e is the eccentricity.  e = 1 for a parabola.  e < 1 for an ellipse and e > 1 for a hyperbola. 

d is the distance from the origin to the directrix. 

r = 
de

1+ e sin θ
  directrix at y = d 

r = 
de

1− e sin θ
  directrix at y = -d 

r = 
de

1+ e cos θ
  directrix at x = d 

r = 
de

1− e cos θ
  directrix at x = -d 



324 
 

 

A parabola has a directrix such that for any point (x, y) on the parabola the distance to the focus 

is equal to the distance to the directrix.  By placing the focus of the parabola at the origin, we 

can translate its equation to polar coordinates.  The distance from (x, y) to the origin is now 

√x2 + y2.  The directrix has moved over along with the focus.  We will say that it is at a 

distance d from the origin.  The distance between (x, y) and the directrix is d + y: 

 

 

 

 

√x2 + y2 = d + y 

r = d + r sin θ 

r – r sin θ  = d 

r(1 – sin θ) = d 

r = 
d

1−sinθ
 

 

Here d is equal to 2p, the distance between the focus and the directrix.  Recall that the 

equation y = ax2 is equivalent to y = 
1

4p
x2.  So, if we want to represent the parabola y = 2x2 in 
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polar coordinates, we would set 
1

4p
 = 2, so that 8p = 1 and p = 1/8.  And d is 2p, so 

r = 
1/4

1−sinθ
.  The polar graph, drawn in MathGV, is shown below.  (You can also use an online 

graphing calculator with polar capabilities, like FooPlot.)  Notice that the focus of the parabola 

is at the origin rather than the vertex, so the graph extends slightly below the polar axis. 

 

 

 

If the parabola opens down instead of up, the directrix is located above the parabola, and the 

distance between (x, y) and the directrix is d – y.  You may have to draw yourself a picture to 

see how that works.    

√x2 + y2 = d – y   

r = d – r sin θ 

r + r sin θ  = d 

r(1 + sin θ) = d 

r = 
d

1 + sin θ
 

http://www.mathgv.com/
http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJ4XjIiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjEwMDB9XQ--
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For side-opening parabolas, the distance from the generic point (x, y) to the directrix is d + x or 

d – x.  Since x = r cos θ, the polar equation is r = 
d

1 ± cosθ
. 

Parabolas are created by placing each point at an equal distance from the focus and the 

directrix.  That makes the ratio 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑓𝑜𝑐𝑢𝑠

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑑𝑖𝑟𝑒𝑐𝑡𝑟𝑖𝑥
 equal to 1.  This ratio is the eccentricity of a 

conic section, and we can make it less than 1, or greater than 1.  When it is less than 1, the 

graph eventually has to curve back in on itself, creating an ellipse.  When the eccentricity is 

greater than 1, the curve is pulled closer to the directrix which creates both branches of a 

hyperbola.  Note that the ellipse and hyperbola have two potential directrices, and either one 

can be used to create the same graph. 

Ellipses or hyperbolas can be created using the polar equations 

r = 
de

1 ± e sin θ
 or r = 

de

1 ± e cos θ
 

where e is the eccentricity and d is the distance from the polar origin to the closest directrix. 
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Vectors 

Vectors are arrows with a given length and direction.  That is all they are, so there is no need to 

feel intimidated.  Vectors are very useful in physics, where they are used to represent forces, 

velocity, and other things that have both a magnitude (size) and a direction.  The length of the 

vector can represent the magnitude, and you just make the arrow point in the direction you 

need.  In mathematics, vectors are normally used along with a coordinate system, and it is most 

convenient to position them so they start at the origin.  That makes them easier to describe, 

because you only have to specify the position of the tip.  For example, a vector that starts at the 

origin and ends at (3, 4) can be easily specified as 〈3, 4〉.  The pointy brackets indicate that we 

are referring to a vector rather than just a point.  The length of this vector can now be 

calculated easily from the Pythagorean Theorem (the Distance Formula in this case).  The 

length, or magnitude, of a vector v⃑  is indicated as |v⃑ |, or sometimes as ‖v⃑ ‖.  |v⃑ | = √32 + 42 = 

√25 = 5.  Vectors are still arrows when placed in a coordinate system, but you could also think 

of them as a set of directions.  The vector 〈3, 4〉 would indicate your net movement if you 

started at the origin and moved 3 units to the right, and 4 units up.  3 is referred to as the x-

component of the vector, and 4 is the y-component. 

 Even though vectors are normally positioned to start at the origin, they are still just arrows 

with a particular length and direction.  Don’t hesitate to pick them up and place them 

somewhere else.  If they don’t start at the origin, you can still describe them like this:  vector 

PQ⃑⃑⃑⃑  ⃑, where P is (2,1) and Q is (5, 5).  Vector PQ⃑⃑⃑⃑  ⃑ has the same length and direction as 〈3, 4〉, 

because to get from point P to point Q you would move 3 units to the right and 4 units up. 

 

Adding or Subtracting Vectors 

 

To add vectors, just think of them as directions.  Suppose you were adding the vectors 〈3, 4〉 

and 〈2, 1〉.  Your directions would say:  First move right 3 units, then up 4 units.  Next, move 

right 2 units, then up 1 unit.  If you were following along with this in a coordinate system, you 

would see that you have now moved to the right a total of 5 units, and up a total of 5 units.  

〈3, 4〉 + 〈2, 1〉 is 〈5, 5〉.  All you have to do is add the two x-components, and the two y-

components to create the resultant vector.  This addition is really the same thing as picking up 

one of the vectors and placing it to start where the other one ends.  The resultant vector is 

drawn as a new vector from the start of the first vector to the end of the second: 
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Amazingly, simple vector addition works out really well in physics.  You can use vectors to 

create a diagram of the forces acting on an object.  In physics, just like in real life, objects react 

as if forces are applied directly to their center of mass.  You can draw the forces as vectors with 

their origin at that center of mass.  If you then superimpose a coordinate system with its origin 

at the center, you can add up the x and y components of all of the vectors.  The resultant force 

that you calculate this way will be exactly equal to the force that is measured by the speed and 

direction of the movement of the object. 

To subtract a vector from another vector, just subtract its x and y components.  To create a 

picture of vector subtraction, consider that subtraction is really an addition of a negative 

number.  10 – 7 = 10 + -7.  To subtract a vector, just make it negative and then use addition.  

For example, 〈3, 4〉 – 〈2, 1〉 = 〈3, 4〉 + 〈−2,−1〉.  The vector 〈−2, −1〉 points in the exact 

opposite direction from 〈2, 1〉.  Addition of 〈3, 4〉 + 〈−2,−1〉 produces the vector 〈1, 3〉: 
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Multiplying a Vector by a Scalar 

 

If you draw a vector that is 5 cm long to represent a force of 50 Newtons, you would probably 

want to draw a vector with a length of 10 cm to represent a force of 100 Newtons.  If the new 

vector is to have the same direction as the original, you can easily create a vector that is twice 

the length by simply multiplying the x- and y-components by 2.  Thanks to the magic of similar 

triangles, which you may vaguely remember from geometry, 〈6, 8〉 is twice as long as 〈3, 4〉.  

When you are working with both vectors and numbers, the numbers are called a scalars.  A 

scalar has a magnitude, but no direction associated with it.  You can multiply any vector by any 

scalar.  To shrink your vector, use a scalar smaller than 1.  If you multiply by a negative scalar, 

the new vector will point in the opposite direction from the original (a 180 degree difference). 

 

 

The Dot Product:  Vectors and Work 

 

The dot product of two vectors  A⃑⃑  〈Ax, Ay〉 and B⃑⃑   〈Bx, By〉 is Ax Bx + Ay By.  Note that the dot 

product is not a vector; it is just a number (a scalar).  This means that the dot product has no 

direction; it just has a magnitude. 

The definition of the dot product may seem arbitrary, but it has a real physical meaning.  In 

physics, work is defined as Force multiplied by displacement.  One Joule (one Newton-meter) 

of work is done when a Force of one Newton moves an object a distance of 1 meter.  Often the 

object in question ends up moving in a direction that is not parallel with the force.  For 

example, try to push an eraser across the surface of your desk.  Chances are that you pushed at 

an angle, and the eraser was hard to move because some of your applied force pressed the 

eraser down into the desk.  To get the maximum “work” output, you should keep your finger 

parallel to the desk so that all of the force moves the eraser forward. 

The actual work done when the force and the displacement do not line up perfectly is |F⃑ | cos θ 

multiplied by the displacement, |d⃑ |.  Here θ is the angle between the force vector and the 

displacement vector, with both vectors drawn so that they start at the center of the mass that 

is being moved.  |F⃑ | |d⃑ | cos θ is the dot product of F⃑   and d⃑ .  If α is the angle of F⃑  with a 

horizontal axis, and β is the angle of d⃑  with that same axis, then cos θ = cos (α – β).  

Trigonometry tells us that cos (α – β) = cos α cos β + sin α sin β.   
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F⃑  has x-component Fx and y-component Fy.  F⃑  = (Fx, Fy).  d⃑  has x-component dx and y-component 

dy.  d⃑  = (dx, dy). 

Therefore, cos θ = 
Fx

|F⃑⃑ |
 ∙  

dx

|d⃑⃑ |
  +  

Fy

|F⃑⃑ |
 ∙  

dy

|d⃑⃑ |
 = 

(Fx∙  dx + Fy∙ dy)

|F⃑⃑ ||d⃑⃑ |
 

 

|F⃑ | |d⃑ | cos θ, the dot product of F⃑  and d⃑ , is Fx dx + Fy dy.   
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Limits and Continuity 

 

Knowing how to factor is important in this section.  Remember that a2 – b2 = (a + b) (a – b). 

Continuous functions have no holes or breaks in their graphs. 

An infinitely small hole (removable discontinuity) appears when a rational function has a factor 

in the numerator that cancels out a factor in the denominator.  The limit exists at the hole. 

In order for a limit to exist, the left-hand limit must equal the right-hand limit. 

Limit = ∞ means that the limit doesn’t exist. 

 

 

 

The easiest way to learn about limits is to use them on something that you are already familiar 

with:  finding the value of a function.  In the picture below, you can see the graph of a function.  

  

 
 

At point A, the value of x is 1.  When you put that into the equation of the function, y = - x3 + 2x 

+ 2, you get a y-value of 3.  We say that the value of the function is 3 when x is equal to 1.  If x is 
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not 1, but just a little bit bigger, you can say that the value of the function is close to 3.  The 

closer x gets to 1, the closer the function value gets to 3.  In this case we would say that x is 

approaching 1 from the right, since we are considering values of x that are to the right of 1 on 

the x-axis.  We could also look at x values smaller than 1, and then get closer and closer to 1 

from the left.  Either way, the function value approaches 3 as x approaches 1 more and more 

closely.  We say that the limit of the function value is 3 as x approaches 1.  By the way, I will use 

y = - x3 + 2x + 2 interchangeably with f(x) = - x3 + 2x + 2.  The “y = …” notation looks simpler and 

it is what you actually use to construct a graph of the function.  The “f(x) = …” way of writing a 

function allows us to specify what value of x was used to obtain a particular value of y shown on 

the graph:  f(1) = 3 is a quick way to write that y is equal to 3 when x is equal to 1. 

Limits are very straightforward when the function has a continuous graph.  However, some 

functions have a break or a hole in the graph.  For example, y = 
x2−9

x−3
 does not have a value 

when x = 3.  The best we can do is get really, really close to 3 and see what happens.  You may 

want to take your calculator and try that out.  You should find that y gets closer and closer to 6 

as x gets closer and closer to 3.  This happens whether you start at 2.9 and go up, or at 3.1 and 

go down.  Even though the function does not have a value at x = 3, we say that the limit of the 

function value, as x approaches 3, is 6. 

As you do your calculations, you might notice that when you get really close to 3, the bottom 

part of the fraction gets to be very small.  Normally, when you divide something by a very small 

decimal number, like .0001, you end up with a large result.  In this case however, the top part 

of the fraction also gets smaller.  Just calculate the top and the bottom parts separately to see 

that.  The reason is that x2 – 9 is the same as (x – 3) times (x + 3).  The bottom part of the 

fraction can get extremely small, but it is always cancelled out by the (x – 3) in the top part.  In 

the end, the actual value of the fraction is always what is left, x + 3.  Even though x is not 

permitted to be 3, the value of the function, x + 3, approaches 6 as x approaches 3. 

You should become comfortable with the idea that a limit is something that you may not be 

able to reach but that you can come as close to as you want.  To make the definition of the 

word limit even more solid, textbook examples will feature piecewise defined functions.  The 

image below shows the piecewise function y = 
x2−9

x−3
 if x ≠ 3 and y = 4 if x = 3: 
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The limit of y is still 6 as x approaches 3, because that is what the function value keeps getting 

closer and closer to.  The actual value of the function is 4 when x is equal to 3. 

Caution:  the open circle shown on the graph at the point (3, 6) is misleading in the sense that it 

is a lot smaller than it looks.  The “hole” that it represents is infinitely small so you shouldn’t be 

able to see it at all.  In fact, x could be 3.0000000000000000000000000000000000000001 

without causing any problems.  Realizing this may make it easier for you to understand that 

there is a still a limit at such a point.  

Although the hole is incredibly small, it is there nevertheless.  The function is not continuous.  

Infinitely small holes appear when a rational function has a factor in the numerator that cancels 

out a factor in the denominator.  For a function like f(x) = 
x2−4

x−2
, x ≠2 the division by  

x – 2 cancels out for every value of x except 2.  The discontinuity at x = 2 can be removed by 

actually doing the division and replacing f(x) with the new function g(x) = x + 2 which has no 

restriction on x.  A discontinuity involving a hole like this is called a removable discontinuity. 

As you go through your chapter you will learn about left-hand limits and right-hand limits.  

These limits will be indicated by + and – signs.  To get a right-hand limit, put your finger on the 

function graph to the right of the point at which you are trying to find the limit, and then move 

closer to it.  For the left-hand limit you start to the left and move right.  If you end up with two 

different values when you do this, the Limit does not exist.  This can happen if there is a break 

or gap in the function.  Another case where this happens is if there is no limit because the 

function values keep getting larger and larger or smaller and smaller near the point in question.  
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We say that the limit is positive or negative infinity, but that really means it does not exist.  It is 

like saying, “The sky is the limit.”  This expression means that there is no limit.   

Lim = ∞ means there is no limit.   

This kind of thing is usually caused by a rational function that doesn’t have a factor in the top 

part that cancels out the division on the bottom.  For example, if f(x) = 
x2+ 4

(x−2)2
 , a value of x very 

close to 2 causes a division by a very tiny number, and there is nothing in the numerator that 

cancels it out.  That makes the function value shoot to infinity as x gets close to 2, creating a 

vertical asymptote at x = 2.  An asymptote is a line that the graph of a function approaches 

more and more closely, but never reaches.  The function f(x) = 
x2+ 4

(x−2)2
 is shown below, along 

with the asymptote at x = 2.  The limit, as x approaches 2, is infinity.  The limit does not exist. 
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Looking for lim x→a of a rational algebraic (no trig, logs or bx) function?  There are 3 

possibilities: 

1.  The function exists at the point in question so you can plug in the value directly 

2.  The top and bottom have a common factor (there is a removable discontinuity) 

3.  There is no common factor so the function has a vertical asymptote (lim = ±∞).   

Don’t hesitate to use your graphing calculator or graphing software to see what is going on. 

 

Limits can often be computed by using algebraic manipulations.  Usually these manipulations 

involve:  factoring, the difference of two squares, the difference or sum of two cubes, and the 

difference of two squares in reverse.  That last part is useful when you see a fractional 

expression that has √… − √…  on the top or the bottom.  Multiply by 
√… + √…

√… + √…
 to eliminate the 

radicals on one end, and don’t worry about the other end.  Something will probably cancel out, 

allowing you to find the limit.    

As you rearrange limit expressions using various tricks, do not rush to multiply out the terms on 

the top or the bottom.  Since you are looking for things to cancel out, the factored form is 

usually better. 

If there is no way to change the expression in your problem to a more favorable one, you may 

be expected to find the limit simply by considering what actually happens when x approaches 

the indicated value. 

The next example involves the natural logarithm function, ln (x).  You may recall that this 

function expresses any number x as the number e raised to some power.  If that doesn’t sound 

familiar, look at the “Exponential Functions and Logarithms” chapter.  Here is a picture of  

y = ln x: 
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Example 

Find lim
x→0+

1−ln x

x
 

x → 0+ means the right-hand limit.  Because ln x doesn’t exist to the left of zero, we can’t 

possibly find the left-hand limit here.  So, consider what happens to ln x as x gets very small.  

You can see that the graph takes a nosedive when it gets near zero.  The reason for that is that 

the only way to create a very small number using ex is to put a large negative exponent on e.  

The natural log function gives you that exponent, so it returns an extremely large negative 

number when x is near 0.  Try it out on your calculator.  This means that 1 – ln x will be an 

extremely large positive number when x is near 0.  And what happens when you take a really 

large number and divide it by a really tiny number?  It just gets even bigger.  lim
x→0+

1−lnx

x
 = ∞, 

which means that it doesn’t exist.  You can check your work by entering y = 
1−ln x

x
 in your 

favorite graphing app. 
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The Squeeze Theorem and a Special Limit 

 

lim
x→0

sin (x)

x
 = lim

x→0

x

sin (x)
 = 1 

If you can show that the value of f(x) is always between that of two other functions, you can use 

the other functions to determine the limit of f(x) at a problem point. 

 

If you look at the graph of y = 
sin x

x
 you can guess that the limit should be 1.  This function has 

an infinitely small hole at x = 0: 

 

 

Although we can see that the limit of 
sin x

x
 is 1, mathematicians like to prove important facts 

like this.  In this case the proof illustrates an important principle called the Squeeze Theorem, 

so we’ll take a close look at it.  Below is a picture of the unit circle with an angle x drawn in the 

first quadrant.   
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The sine of the angle is marked in red, and the cosine is marked in green.  The orange line is a 

tangent line to the circle.  Because triangle ABC is similar to triangle AED,  
CB

AB
 = 

sin x

cos x
 = tan x = 

DE

AE
.  This is a unit circle so the length of AE is 1,and the length of DE represents the value of the 

tangent of angle x.  

This incidentally is the real tangent of an angle; it is the length of the part of the tangent line 

that is intercepted by the angle, which happens to be the same as the sine divided by the 

cosine.  The area of triangle ABC is ½ times the base AB times the height BC, which is  

½ cos x sin x.  That area is obviously smaller than the piece of the circle that has endpoints A, E 

and C.  In turn, the piece of the circle is smaller than triangle AED.  To find the area of the slice 

of the circle (the sector of the circle), we have to figure out what portion of the circle it 

represents.  Recall that there are 2π radians in a circle, so a piece with angle x is x/2π times the 

area of the circle.  For a unit circle like this, the area of the circle is just π.  
x

2π
 ∙ π = 

x

2
.  Still larger 

than the sector of the circle is the triangle AED.  Its area is ½ ∙ 1 ∙ tan x, which is ½ tan x. 

Now we can set up an inequality: 

cos x sin x

2
 ≤ 

x

2
 ≤ 

tan x

2
     Multiply everything by 2 to get  

cos x sin x ≤ x ≤ 
sin x

cos x
    Divide everything by sin x while x is not yet zero: 
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cos x ≤ 
x

sin x
 ≤ 

1

cos x
   

Note that if 
a

b
 ≤ 

c

d
, where a, b. c and d are all positive numbers, then a ≤ 

bc

d
.  Multiply by d to 

get ad ≤ bc.  Dividing by a gives d ≤ 
bc

a
, and dividing by c we get 

d

c
 ≤ 

b

a
.  So, if you take the 

reciprocals of the reciprocals of the fractions, reverse the less than or equals sign: 

1

cos x
 ≥ 

sin x

x
 ≥ cos x 

This statement shows that for an angle x in the first quadrant, 
sin x

x
 is always between 

1

cos x
 and 

cos x.  As x goes to zero, 
1

cos x
 goes to 1, and so does cos x.  The limit we want, lim

x→0

sin x

x
, is 

squeezed between the other two limits which are both 1.  We conclude that lim
x→0

sin x

x
 = 1.  

(From the explanation above, you can also see that lim
x→0

x

sin x
 = 1).  Here we approached this 

limit from the right by drawing our triangles in the first quadrant.  We can draw these same 

triangles in the fourth quadrant to approach the limit from the left with the same result. 

The picture below shows y = 
sin x

x
 being squeezed between the graph of sec x (green) and cos x 

(red): 
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Trigonometric Limits 

 

lim
x→0

sin (mx)

mx
 = 1 

lim
x→0

tan (mx)

mx
 = 1 

lim
x→0

1 − cos (mx)

mx
 = lim

x→0

cos  (mx) − 1

mx
 = 0 

If you can determine that lim
x→0

f(x)

g(x)
 = 

m

n
, then lim

x→0

g(x)

f(x)
 = 

n

m
. 

 

 

In the last section we saw that lim
x→0

sin x

x
 = 1, and lim

x→0

x

sin x
 = 1.  In general, the limit of the 

reciprocal is the reciprocal of the original limit.  So, if you can determine that lim
x→0

f(x)

g(x)
 = 

m

n
, then 

lim
x→0

g(x)

f(x)
 = 

n

m
.   

We can also make simple substitution for x: 

lim
x→0

sin x

x
 = 1     lim

x→0

sin h

h
 = 1   lim

x→0

sin (3x)

3x
 = 1 

That last one works because multiplying x by 3 only compresses the graph horizontally, as 

shown by the red graph below. 

 

In general, we can say that lim
x→0

sin (mx)

mx
 = 1 
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Unfortunately, there is no limit for f(x) = 
cos x

x
.  A reason for that is that this limit does not have 

the form 
0

0
 like 

sin x

x
.  Instead, the cosine approaches 1 as x gets smaller and smaller.  That 

causes 
cos x

x
 to shoot to negative and positive infinity as x gets close to 0.  The limit does not 

exist.  We can get around that problem by considering the limit of 
1− cos x

x
 as x goes to zero: 

 

 You can see from the graph that this limit is zero.   

Once you know a few basic limits, you can find more. 

 

Example 

Find lim
x→0

tan x

x
 

 

lim
x→0

tan x

x
 = lim

x→0

sinx

cosx

x
.  To divide 

sin x

cos x
 by x, we should multiply it by 

1

x
.  Then we get  

lim
x→0

tan x

x
 = lim

x→0

sin x

x cos x
 

Thanks to the limit laws, we know that we can split this into 

 

lim
x→0

(
sin x

x
 ∙  

1

cos x
) = lim

x→0

sin x

x
 ∙ lim

x→0

1

cos x
  

lim
x→0

1

cos x
 can just be determined by inserting 0 for x:  lim

x→0

1

cos0
 = 1.   
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lim
x→0

sin x

x
 ∙ lim

x→0

1

cos x
 = 1 ∙ 1 

lim
x→0

tan x

x
 = 1 

Just like we did with the sine limit, you can make a simple substitution for x in lim
x→0

tan x

x
 , so 

that lim
x→0

tan (mx)

mx
 = lim

x→0

mx

tan (mx)
 = 1. 

And that also works for the limit with the cosine:  lim
x→0

1−cos (mx)

mx
 = lim

x→0

cos  (mx)−1

mx
 = 0 

 

 

Now look at lim
x→0

sin (3x)

4x
.  Notice that the parts with the x don’t match, so we can’t just 

substitute and say that the limit is 1.  We can however multiply the top and bottom by 3x: 

lim
x→0

3x sin (3x)

3x ∙ 4x
  

Now separate that into two parts: 

lim
x→0

3x sin (3x)

3x ∙ 4x
 = lim

x→0

sin (3x)

3x 
 ∙ 

3x 

4x
 

Even though x will get closer and closer to 0, it is never officially 0 because we are using a limit.  

As a result, we can just cancel x.  Alternatively, we could have multiplied the top and bottom of 

the fraction by 3 initially, rather than by 3x: 

lim
x→0

sin (3x)

4x 
 ∙ 

 3 

3
 = lim

x→0

sin (3x)

3x 
 ∙ 

 3 

4
 = 1 ∙ 

 3 

4
 = 

 3 

4
 

In general, we can say that lim
x→0

sin (mx)

nx
 = 

m 

n
 

In the same way, with just a bit more work, you can show that lim
x→0

tan (mx)

nx
 = 

m

n
 

Here are a few more: 

lim
x→0

sin (mx)

sin (nx)
 =  lim

x→0

tan (mx)

tan (nx)
 = lim

x→0

tan (mx)

sin (nx)
 =  lim

x→0

sin (mx)

tan (nx)
 = 

m

n
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lim
x→0

csc (mx)

csc (nx)
 =  lim

x→0

cot (mx)

cot (nx)
 = lim

x→0

cot (mx)

csc (nx)
 =  lim

x→0

csc (mx)

cot (nx)
 = 

n

m
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